
z
−1

=
x− iy

x2 + y2

Re z ≤ |Re z| ≤ |z|

Im z ≤ | Im z| ≤ |z|

|z1| − |z2| ≤ |z1 + z2| ≤ |z1| + |z2|

Re z =
z + z̄

2
and Im z =

z − z̄

2i
|z|2 = zz̄

e
iθ

= cos θ + i sin θ

(cos θ + i sin θ)
n

= cosnθ + i sinnθ

z
n

= z0 = r0e
iθ0 ⇐⇒ z = n

√
r0 exp

[
i

(
θ0

n
+

2πk

n

)]
z
c
= e

c log z

sin z =
eiz − e−iz

2i
and cos z =

eiz + e−iz

2

sinh z =
ez − e−z

2
and cosh z =

ez + e−z

2

cosh
2
z − sinh

2
z = 1

sin z = sin x cosh y + i cos x sinh y

| sin z|2 = sin
2
x+ sinh

2
y

sin
−1

z = −i log (iz +
√

1 − z2)

arg z = arg re
iθ

= θ

−π < Arg z ≤ π

log z = ln r + i(θ + 2πk) , k ∈ Z , Log z = log z|k=0

Formulas, Inequalities, and Functions

f(z) = z + c : translation by a constant

f(z) = e
iα
z : rotation by α

f(z) = kz : magnification leaving the argument invariant

Definition (Möbius transformation):

T : C̄ → C̄ , z 7→ T (z) =
az + b

cz + d

Theorem: The Möbius transformation maps circles to circles in C̄.
It is a composition of a linear transformation, and inversion, and

another linear transformation.

Definition (Cross-ratio):

(w − w1)(w2 − w3)

(w − w3)(w2 − w1)
=

(z − z1)(z2 − z3)

(z − z3)(z2 − z1)

Definition: A function f : D → C is called a conformal transfor-

mation if it is analytic with f ′(z) ̸= 0 for all z ∈ D.

Theorem: Let f be conformal and C1, C2 be two curves smooth

at z0 where they intersect with acute angle ψ. Then f(C1), f(C2)

intersect with the same angle.

Theorem: Let ϕ be harmonic on a simply connected R. Then ϕ

remains harmonic under any conformal transformation.

Corollary: Let T be a conformal transformation and C be a smo-

oth arc. Then if ϕ(x, y) = k on C, Φ(u, v) = k on T (C).

Complex Mappings

Definition: f : Ûϵ(z0) → C. Then the limit

lim
z→z0

f(z) = w0

exists if ∀ϵ > 0, ∃δ > 0 s.t.

|f(z) − w0| < ϵ whenever 0 < |z − z0| < δ

Theorem: Let z = x + iy and f(z) = u(x, y) + iv(x, y), then the

limit,

lim
z→z0

f(z) = w0 = u0 + iv0

exists if and only if,

lim
(x,y)→(x0,y0)

u(x, y) = u0 , lim
(x,y)→(x0,y0)

v(x, y) = v0

Theorem:

lim
z→∞

f(z) = w0 ⇐⇒ lim
z→0

f

(
1

z

)
= w0

lim
z→z0

f(z) = ∞ ⇐⇒ lim z → z0
1

f(z)
= 0

lim
z→∞

f(z) = ∞ ⇐⇒ lim
z→0

1

f( 1
z )

= 0

Definition: A function f is called continuous at z0 if f(z0) and

limz→z0
f(z) exist and

lim
z→z0

f(z) = f(z0)

Theorem: If f is nonzero and continuous at z0, then it is nonzero

throughout a neighborhood containing z0.

Definition: A complex-valued function that is analytic except pos-

sibly for poles is meromorphic.

Theorem: Let f be analytic at z0 with f ′(z0) ̸= 0. Then an

inverse function f−1 exists in a neighborhood of f(z0).

Limits and Continuity

∫ b

a

w(t) dt =

∫ b

a

u(t) dt+ i

∫ b

a

v(t) dt

Definition: Curve with no self intersections → simple. Meet at

endpoints → simple closed.

L(C) =

∫ b

a

|z′(t)| dt

Definition: Let C : z(t), t ∈ [a, b] be a contour and f(z) be pi-

ecewise continuous on C. Then the contour integral of f on C

is, ∫
C

f(z) dz =

∫ b

a

f(z(t))z
′
(t) dt

Parametric and Contour Integrals

Lemma: Differentiability implies continuity.

Theorem: If f ′(z) exists at z0 = (x0, y0), then,

∂u

∂x
=
∂v

∂y
,
∂u

∂y
= −

∂v

∂x

and f ′(z0) = ux + ivx

Theorem: The first partial derivatives of f(z) exist for all Uϵ(z0),

are continuous, and satisfy the C.R.E, then f ′(z0) = ux+ivx exists.

Lemma: The C.R.E. in polar coordinates are,

rur = vθ , uθ = −rvr and f
′
(z(r, θ)) = e

−iθ
(ur + ivr)

Definition: A function f : D → C that is differentiable at each

point in Uϵ(z0) ⊂ D is holomorphic in Uϵ(z0).

Definition: Holomorphic at every point of C → entire.

Theorem: If f : D → C and f̄ are holomorphic everywhere in D,

or |f | is constant everywhere in D, then f is constant throughout

D.

Theorem: If f(z) = u(x, y) + iv(x, y) is holomorphic in D, then

its real part u and imaginary part v are harmonic in D, that is,

they satisfy hxx + hyy = 0.

Corollary: A holormorphic function on a simply connected do-

main has an antiderivative.

Theorem: Let R be simply connected and u : R → R be harmonic.

Then there exists an analytic f : R → C such that u = ℜf .

Differentiation

Finitely many poles above the real axis: Draw a contour C =

CR ∪ [−R,R] and use Cauchy residue formula to evaluate.

Fourier Integrals: Possibly apply Jordan’s Lemma∫ ∞

−∞
f(x) cos kx dx+ i

∫ ∞

−∞
f(x) sin kx dx =

∫ ∞

−∞
f(x)e

ikx
dx

Poles on the real axis: Modify the contour to circumvent the poles.

Use Lemma about negative even powers.

Branches: Create a contour like the indented path and let the curve

approach the branch. Use Lemma about limz→0 zf(z).

Trigonometric integrals: On the unit circle,

sin θ =
z − z−1

2i
and cos θ =

z + z−1

2
, dθ =

dz

iz

Integral Tricks

Lemma: Let R be simply connected and bounded by a simple clo-

sed C. Suppose ϕ is harmonic in R with ϕ(C) ≤ M for some real

M . Then ϕ(R) ≤ M , attaining its maximum on the boundary.

Theorem: Let R be simply connected and bounded by a simple

closed C. If there exists a harmonic ϕ with prescribed ϕ(C), then

ϕ is unique.

Boundary Value Problems
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Theorem (ML): Suppose C is a contour of length L, and f(z) on

C is piecewise continuous and bounded by M ≥ 0, then,∣∣∣∣∫
C

f(z) dz

∣∣∣∣ ≤ ML

Lemma: For a complex-valued piecewise continuous w(t), t ∈
[a, b], ∣∣∣∣∫ b

a

w(t) dt

∣∣∣∣ ≤ ∫ b

a

|w(t)
′| dt

Theorem: Support f : D → C is continuous and the coutour C is

entirely in D, then the following are equivalent,

1. The antiderivative F (z) exists in D and for any C from z1
to z2, we have

∫
C
f(z) dz = F (z2) − F (z1)

2. For every closed C, we have
∫
C
f(z) dz = 0

Theorem (Cauchy): Let C be simple closed in D and f : D →
C be holomorphic with f ′ continuous on and within C, then,∫
C
f(z) dz = 0.

Theorem (Cauchy-Goursat): Let C be simple closed in D and

f : D → C be holomorphic on and within C, then
∫
C
f(z) dz = 0.

Theorem: Let C be a closed contour in a simply-connected domain

D, and f : D → C be holormophic in D, then,
∫
C
f(z) dz = 0.

Theorem: Let f be a holomorphic function on a multiply con-

nected domain, and let C be a positively and Ci be n negatively

oriented simple closed contours, with Ci inside of and disjoint from

C, then, ∫
C

f(z) dz +

n∑
i=1

∫
Ci

f(z) dz = 0

Corollary: We can deform simple closed contours without chan-

ging the contour integral value, provided f is holomorphic across

the deformation.

Theorem (Cauchy’s integral formula): Let C be a positively orien-

ted simple closed contour, and f be holomorphic everywhere inside

and on C, then for any z0 inside C,

f
(n)

(z0) =
n!

2πi

∫
C

f(z)dz

(z − z0)n+1

Theorem: If f is holormorphic at a point z0, then its derivatives

of all orders exist and are holormorphic at z0.

Theorem (Morera): Let f be continuous on a domain D. If∫
C
f(z) dz = 0 for every closed contour C, then f is holomorphic

throughout D.

Theorem (Liouville): Every bounded entire function is constant.

Theorem (Cauchy’s residue theorem): Let C be a positively ori-

ented, simple closed contour. If f is an analytic function on and

within C except at a finite number n of isolated singularities zk,

then, ∫
C

f(z) dz = 2πi
n∑

k=1

res f(zk)

Integral Theorems and Lemmata

Theorem: Suppose f is analytic throughout C except for isolated

singularities which are all enclosed by the positively oriented simple

closed C,∫
C

f(z) dz = −2πi res f(∞) = 2πi res

(
1

z2
f

(
1

z

))
(0)

Lemma (Jordan): Suppose f(z) is analytic throughout the upper

half plane and outside the origin-centered circle of radius R0, and

consider the half circle contour CR : |z| = R > R0, 0 ≤ θ ≤ π. If,

|f(z)|(CR) ≤ MR and limR→∞MR = 0 then for every k > 0,

lim
R→∞

∫
CR

f(z)e
ikz

= 0

Lemma: Suppose f is analytic in 0 < |z − xi| < r and let Ci be

the clockwise semicircle z = xi + rie
iθ, π ≥ θ ≥ 0 with ri < r.

Then if the Laurent series of f about xi contains no even negative

powers, then we have,

lim
ri→0

∫
Ci

f(z) dz = −iπ res f(xi)

Lemma: Let Cr be a circular segment of radius r centered at

z0 = 0 and f(z) be continuous on Cr, then,

lim
z→0

zf(z) = 0 implies lim
r→0

∫
Cr

f(z)dz = 0

Formula: Laplace transform of a continuous real-valued function

f : t ∈ R+
0 7→ f(t)

f̄ : s ∈ C 7→
∫ ∞

0

f(t)e
−st

dt

Formula (Bromwich Formula):

f(t) =
1

2πi
lim

R→∞

∫
ΓR

f̄(s)e
st
ds

Integral Theorems and Lemmata

• Isolated singularity: f is analytic in a deleted neigh-

borhood Û(z0)

• Essential isolated singularity: There is no positive inte-

ger m such that cn = 0 for all n < −m.

• Pole of order m: Exists a positive integer m s.t. cn = 0

for all n < −m.

• Removable singularity: cn = 0 for all n < 0. Can be

removed be defining f(z0) = c0

Definition: The residue of f at z0 is the coefficient of 1
z−z0

, the

number

res f(z0) = c−1 =
1

2πi

∫
C

f(z) dz

Lemma:

res f(z0) =
1

(m− 1)!

dm−1

dzm−1
[(z − z0)

m
f(z)](z0)

Theorem: A zero of an analytic f that is not identically zero is

isolated.

Lemma: Suppose p(z0) ̸= 0, q(z0) = 0, q′(z0) ̸= 0, analytic, then,

res

[
p

q

]
(z0) =

p(z0)

q′(z0)

Singularities and Residues

Definition: An infinite sequence N → C, {zn} = {z1, z2, z3, ...}
has a limit z is for every ϵ > 0 there exists a positive integer Nϵ

s.t.

n > Nϵ =⇒ |zn − z| < ϵ

Definition: A function f : Uϵ(z0) → C is called analytic if for

every z ∈ Uϵ(z0), it is represented by a convergent power series,

f(z) =

∞∑
n=0

an(z − z0)
n

Theorem: If a power series
∑∞

n=0 an(z − z0)
n converges for

z = z1 ̸= z0, then it is absolutely convergent everywhere in the

open disk |z − z0| < R1 where R1 = |z1 − z0|. The greatest cir-

cle centered at z0 such that the power series converges everywhere

inside in called the circle of convergence.

Theorem: Suppose z1 is inside the circle of convergence |z−z0| <
R of a power series

∑∞
n=0 an(z−z0)

n. Then the series is uniformly

convergent in the closed disk |z − z0| ≤ R1 where R1 = |z1 − z0|.

Theorem: A power series is a continuous function S(z) everywhere

inside its circle of convergence |z − z0| = R.

Theorem (Taylor): Suppose f is holomorphic throughout the open

disk |z − z0| < R0. Then f is analytic, given by the convergent

infinite power series,

f(z) =

∞∑
n=0

an(z − z0)
n

, an =
f(n)(z0)

n!

Theorem (Laurent): Suppose f is analytic in an annular domain

R0 < |z − z0| < R1, and let C be a simple closed contour in this

domain. Then throughout the domain, f has the convergent series,

f(z) =

∞∑
n=−∞

cn(z − z0)
n

, cn =
1

2πi

∫
C

f(z)dz

(z − z0)n+1

Theorem: A power series that converges to f(z) everywhere inside

|z − z0| = R is the Taylor series of f about z0.

Theorem: A series
∞∑

n=−∞
cn(z − z0)

n
=

∞∑
n=0

an(z − z0)
n
+

∞∑
n=1

bn

(z − z0)n

convergent to f(z) everywhere in the annular domain around z0 is

the Laurent series of f about z0.

Sequences and Series

Theorem (Argument principle): For a meromorphic function f ,

Z − P =
1

2πi

∫
C

f ′(z)

f(z)
dz =

1

2π
∆C arg f = ν(Γ, 0)

Theorem (Rouché): Suppose f and g are analytic on and inside

a simple closed contour C, and |g(z)| < |f(z)| on C. Then f and

f + g have the same number of zeros inside C.

Theorem (Brouwer): Let D : |z| ≤ 1 and g : D → int D be

analytic with |g(z)| < 1. Then g has a fixed point z0 such that

g(z0) = z0.

Theorem (Inverse function): Let f be analytic at z0 with f ′(z0) ̸=
0. Then its inverse f−1 in a neighborhood D ∋ w0 = f(z0) is uni-

que and analytic.

Miscellaneous Theorems
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