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ABSTRACT

Stanley [14] introduced theChromatic Symmetric Function (CSF) in 1995 as a symmetric function
associated to a graph 𝐺 = (𝑉, 𝐸) and defined via the proper colorings of 𝐺. One major open
question surrounding the CSF is whether it can distinguish tree graphs (up to isomorphism),
and it has been verified tobe true for trees up to 29 vertices [9]. InChapter 1, we give explicit for‐
mulas for the CSF of complete bipartitie graphs, windmill graphs, and lollipop graphs. Chapter
2 serves as a review of the graph and tree properties known to be preserved by the CSF. Lastly,
the major results of this paper are in Chapter 3, where we give simple, combinatorial proofs
that certain infinite families of trees, namely path graphs with one leaf adjoined, and spiders,
are distinguished by their CSFs. Because our proofs are combinatorial in‐nature and not al‐
gebraic, they provide a unique insight into the structure of the CSF. Furthermore, we give a
classification of the difference of two CSFs of trees in‐terms of forest graphs, which implies a
new approach to the proof that trees are distinguished by the CSF.

ii



Chapter 1

A BACKGROUND ON (CHROMATIC) SYMMETRIC
FUNCTIONS

1.1 Introduction and Results

The study of symmetric functions is not new, it dates back at least to themid‐ to late‐nineteenth
century [5], but it remains a very active area of research in algebraic combinatorics today. Ab‐
stracting a systemwhere symmetry is present to a representative symmetric function is useful
to apply the many powerful transformations in symmetric function theory, and then interpret
those new results in the context of the original system. The chromatic symmetric function
(CSF) is an example of this, exploiting the inherent symmetry in proper graph colorings. De‐
spite its introduction 30 years prior, the CSF remains a highly active area of research today,
fueled by its open problems which are easily stated, but are very difficult to solve.

In Chapter 1, we give an overview of symmetric functions, including definitions of various
common bases. Furthermore, in this chapter we introduce the definition of the chromatic
symmetric function, as well as the most important combinatorial properties of the CSF which
will be used throughout the entire paper. We also introduce the special topic of chromatic
bases. Special attention should be given to Theorem 1.3.1. and Theorem 1.3.2,1 which are
original to this paper and give explicit expressions for the CSF of particular families of graphs,
namely complete bipartitie graphs, windmill graphs, and lollipop graphs.

Chapter 2 serves as a review of the most notable graph properties which are known to be pre‐
served by the CSF. In particular, we give original proofs for several of these properties. We
give a particular focus to properties which are preserved in the case where the CSF is known
to correspond to a tree, where we give high‐level overviews of the relevant proofs.

Chapter 3 covers an open problem known as Stanley’s isomorphism conjecture, namely, that the
CSF distinguishes tree graphs. We begin by examining the simple family of graphs obtained
by adjoining a single leaf to a path graph. Theorem 3.1.1 shows that the intuitive approach of
studying the algebraic difference in two CSFs is sufficient to recover the difference in the struc‐
ture of the graphs themselves. Next, Theorem 3.2.1 gives a simple, combinatorial argument
that trees with at most one vertex of degree greater than 3 can be reconstructed only using
their CSF. Finally, we give a new approach to the proof of Stanley’s conjecture in Theorem
3.3.2, which is related to the result of Theorem 3.3.1, which states the algebraic difference
of two tree CSFs is an algebraic combination of CSFs of forests. In particular, we outline an
inductive proof of Stanley’s conjecture, and leave it as future work to complete this argument.

1In general, we reserve the word Theorem for results which are original to this work.
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This paper is written at the undergraduate level, and assumes only a basic knowledge of graph
theory and standard notations, as well as combinatorial reasoning.

1.2 Symmetric Functions and Integer Partitions

A symmetric function is, intuitively, a polynomial expression in an infinite amount of commu‐
tative indeterminates, with the special property of invariance under any permutation of its
variables. To be more formal, let 𝜋 ∶ ℕ → ℕ be any permutation (i.e., 𝜋 is a bijective map‐
ping) and 𝑓(𝑥1, 𝑥2, ...) ∈ ℚ[𝑥1, 𝑥2, ...]. 2 Then we say 𝑓 is a symmetric function if,

𝑓(𝑥1, 𝑥2, ...) = 𝑓(𝑥𝜋(1), 𝑥𝜋(2), ...)

For example, the function,3

𝑔(𝑥1, 𝑥2, ...) = 􏾟
(𝑖,𝑗)∈ℕ×ℕ

𝑥2𝑖 𝑥𝑗

is symmetric, and includes monomial terms such as 𝑥242𝑥15 and 𝑥327. For convenience, will usu‐
ally omit the argument and denote the symmetric function 𝑓(𝑥1, 𝑥2, ...) simply as 𝑓. In fact, as
long as it is ”large enough”, the number of indeterminates considered in a symmetric function
is usually irrelevant.

1.2.1 Integer Partitions

Integer partitions are essential to understand symmetric functions, as symmetric function
bases homogeneous of degree 𝑛 are defined over the set of all partitions of 𝑛. First, we de‐
fine integer partitions, and then several operations on integer partitions which will be useful
later‐on in this chapter.

Let 𝑛 ∈ ℤ+. We say that 𝜆 ⊢ 𝑛 is an integer partition of 𝑛 and write 𝜆 = (𝜆1, 𝜆2, ..., 𝜆𝑘) if,

1. 𝜆𝑖 ∈ ℤ+ for all 1 ≤ 𝑖 ≤ 𝑘

2. 𝜆1 ≥ 𝜆2 ≥ ... ≥ 𝜆𝑘 (weakly decreasing)

3. 𝜆1 + 𝜆2 + ... + 𝜆𝑘 = 𝑛

In this case, we let define 𝑙(𝜆) = 𝑘 to be the length of𝜆. For convenience, if𝜆𝑖 = 𝜆𝑖+1 = ... = 𝜆𝑗 for
𝑖 < 𝑗, thenwewrite 𝜆 = (𝜆1, ...𝜆𝑖−1, 𝜆

𝑗−𝑖+1
𝑖 , 𝜆𝑗+1, ...𝜆𝑙(𝜆)). For a fixed 𝑛, we let 𝑝(𝑛) to be the number

of integer partitions of 𝑛, called the partition number of 𝑛. Interestingly, there is no known
closed‐form expression for 𝑝(𝑛). Next, we define several operations on integer partitions, but
note that the notation may not be standard.

Let 𝜆 = (𝜆1, 𝜆2, ..., 𝜆𝑘) ⊢ 𝑛 be a partition of 𝑛. We say that 𝜇 ⊂ 𝜆 (𝜇 is a subpartition of 𝜆) if
𝜇 = (𝜆𝜅(1), 𝜆𝜅(2), ..., 𝜆𝜅(ℓ)), where ℓ ≤ 𝑘, for some strictly increasing function 𝜅 ∶ {1, 2, ..., ℓ} →
{1, 2, ..., 𝑙(𝜆)}. Moreover, we let 𝜆 − 𝜇 to be the partition 𝜆 with the elements of 𝜇 removed, that
is 𝜆 − 𝜇 contains 𝜆𝑖 as a component if and only if 𝑖 ≠ 𝜅(𝑠) for any 𝑠 ∈ {1, 2, ..., ℓ}. Similarly, we
let 𝜆 + 𝜇 to be partition obtained by sorting the multiset {𝜇𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑙(𝜇)} ∪ {𝜆𝑗 ∶ 1 ≤ 𝑗 ≤ 𝑙(𝜆)}
in weakly decreasing order. If we let 𝑚 = ∑𝜇𝑖, then it is not hard to see that 𝜇 ⊢ 𝑚, 𝜆 − 𝜇 is

2For our purposes, we take the coefficients of each monomial in 𝑓 to be from the field ℚ, unless otherwise
specified. That said, symmetric functions are well‐defined for any choice of a commutative ring of coefficients. ℤ
is often considered as a ring of coefficients over which to define the ring of symmetric functions.

3Onemust be careful to distinguish between a ”function” in the sense of a mapping from inputs to outputs, and
a ”function” in the symmetric function sense, which is a representation of a formal power series.
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a partition of 𝑛 − 𝑚, and 𝜆 + 𝜇 is a partition of 𝑛 + 𝑚. Lastly, if 𝜆 = (𝑛𝑟𝑛 , (𝑛 − 1)𝑟𝑛−1 , ..., 2𝑟𝑛 , 1𝑟1)
where each 𝑟𝑖 ≥ 0 for 1 ≤ 𝑖 ≤ 𝑛, we define 𝜆̃ = 𝑟1!𝑟2!...𝑟𝑛!. Notice that in this case, the 𝑟𝑖’s are not
exponents in the traditional (real number) sense, but count the number of times 𝑖 appears in
the partition 𝜆.

Finally, we define the lexicographic ordering on the set of partitions of a fixed integer 𝑛, which
is a total ordering. Namely, for 𝜆, 𝜇 ⊢ 𝑛 such that 𝜆 ≠ 𝜇, let 𝑖 be the smallest index for which
𝜆𝑖 ≠ 𝜇𝑖 (if there is no such index, then 𝜆 = 𝜇). Then, we say 𝜆 <𝐿 𝜇 if 𝜆𝑖 < 𝜇𝑖, and otherwise
𝜇 <𝐿 𝜆.

Example 1.2.1. The partitions of 𝑛 = 5 are,

𝜆1 = (5) 𝜆2 = (4, 1) 𝜆3 = (3, 2) 𝜆4 = (3, 1, 1)
𝜆5 = (2, 2, 1) 𝜆6 = (2, 1, 1, 1) 𝜆7 = (1, 1, 1, 1, 1)

Hence, 𝑝(5) = 7. We can see that 𝜆𝑖 >𝐿 𝜆𝑖+1 for all 1 ≤ 𝑖 < 7. Moreover, we have that 𝜇 = (2, 1) ⊂
𝜆6, 𝜆6 − 𝜇 = (1, 1), and 𝜆6 + 𝜇 = (22, 14). Lastly, we have that 􏷾(𝜆6 + 𝜇) = 2! ⋅ 4! = 48.

1.2.2 Symmetric Function Bases

LetΛ𝑛 denote the set of symmetric functions homogeneous of degree 𝑛, indicating that for any
𝑓 ∈ Λ𝑛, the sum of the exponents in eachmonomial in 𝑓 is 𝑛. It is well‐known thatΛ𝑛 is a finite‐
dimensional vector space over ℚ with dimension 𝑝(𝑛) (or, more generally, Λ𝑛 is a ℚ‐module),
where 𝑝(𝑛) is the partition number of 𝑛. There are five commonly‐used bases ofΛ𝑛. We give the
definition and some properties of each of these bases here.

Monomial Basis Let 𝜆 ⊢ 𝑛 be a partition of 𝑛. The monomial symmetric function 𝑚𝜆 is
defined as,

𝑚𝜆 = 􏾜
𝛼=(𝛼1,...,𝛼𝑘)∼𝜆

􏾜
𝑗1<...<𝑗𝑘

𝑥𝛼1𝑗1 ⋅ ... ⋅ 𝑥
𝛼𝑘
𝑗𝑘

where 𝛼 ∼ 𝜆 if 𝛼 is a rearrangement of the parts of 𝜆. That is, 𝛼 = (𝜆𝜋(𝑖))
𝑙(𝜆)
𝑖=1 where 𝜋 ∶

{1, 2, ..., 𝑙(𝜆)} → {1, 2, ..., 𝑙(𝜆)} is a permutation. Such an 𝛼 is commonly referred to as a com-
position of 𝑛, i.e. a partition irrespective of any ordering of its parts.

We will show that the set𝑚𝜆 over all partitions 𝜆 ⊢ 𝑛 is indeed a basis for Λ𝑛, proving that the
dimension of Λ𝑛 is 𝑝(𝑛).

Lemma 1.2.1. The set m𝑛 = {𝑚𝜆 ∶ 𝜆 ⊢ 𝑛} of monomial symmetric functions homogeneous of degree
𝑛 is a basis for Λ𝑛.

Proof. First, wewill show linear independenceofm𝑛. For anymonomial of the form 𝑥𝜆11 𝑥
𝜆2
2 ...𝑥

𝜆𝑘
𝑘 ,

such that∑𝑘
𝑖=1 𝜆𝑖 = 𝑛, there is only one partition of 𝑛 whose parts are (𝜆1, 𝜆2, ..., 𝜆𝑘), up to rear‐

rangement, call it 𝜆, and the monomial is a term in 𝑚𝜆. Hence, for any two partitions, 𝜆 ≠ 𝛼,
𝑚𝜆 and 𝑚𝛼 have no terms in‐common. In other words,∑𝜆⊢𝑛 𝑎𝜆𝑚𝜆 = 0 if and only if 𝑎𝜆 = 0 for
every 𝜆 ⊢ 𝑛. Hence, the setm is linearly independent.

Next, we will show that the set m𝑛 spans Λ𝑛. Let 𝑓 ∈ Λ𝑛. We will argue by induction on the
number of terms in 𝑓. If 𝑓 = 0, then 𝑓 = 0 ⋅ 𝑚𝜆 for any 𝜆 ⊢ 𝑛. Suppose 𝑓 ≠ 0, then 𝑓 contains
a term 𝑎𝜇 ⋅ 𝑥

𝜇1
1 𝑥

𝜇2
2 ...𝑥

𝜇ℓ
ℓ ∈ 𝑎𝜇𝑚𝜇 where 𝜇 = (𝜇1, 𝜇2, ..., 𝜇𝑘). Furthermore, 𝑓 − 𝑎𝜇𝑚𝜇 ∈ Λ𝑛 and has

fewer terms than 𝑓. By induction on the number of terms in 𝑓, it follows that we can express
𝑓 as a linear combination of monomial symmetric functions inm𝑛.
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On the surface, this result seems trivial, but turns‐out to be very useful to show that the other
symmetric function bases in this chapter are indeed bases of Λ𝑛 overℚ. That is, we can write
each of the basis elements as a linear combination of monomial symmetric functions (see
Chapter 7 in [15] or Chapter 1.5 in [11] for explicit transition formulas), and cite Lemma 1.2.1
to complete the argument.

Elementary and Homogeneous Bases The elementary symmetric function basis is the collec‐
tion of terms, e𝑛 = {𝑒𝜆 = 𝑒𝜆1 ⋅ ... ⋅ 𝑒𝜆𝑙(𝜆) | 𝜆 ⊢ 𝑛}, where,

𝑒𝑘 = 𝑚(1𝑘) = 􏾜
𝑗1<𝑗2<...<𝑗𝑘

𝑘
􏾟
𝑖=1

𝑥𝑗𝑖

That e𝑛 indeed forms a basis for Λ𝑛 is referred to as the Fundamental Theorem of Symmetric
Functions. This is due to the fact that, along with the basis property of e𝑛 the set {𝑒𝑛}𝑛≥1 is
algebraically independent, that is, there is no nonzero polynomial 𝑔(𝛼1, 𝛼2, ..., 𝛼𝑛) such that
𝑔(𝑒1, 𝑒2, ..., 𝑒𝑛) = 0. The result is the set of all symmetric functions is the set of all polynomials
with coefficients inℚ over {𝑒𝑛}𝑛≥1, or, Λ = ℚ[𝑒1, 𝑒2, ...].

Next, the complete homogeneous symmetric function basis is the collection of terms {ℎ𝜆 = ℎ𝜆1 ⋅
... ⋅ ℎ𝜆𝑙(𝜆) | 𝜆 ⊢ 𝑛}, where,

ℎ𝑘 = 􏾜
𝑗1≤𝑗2≤...≤𝑗𝑘

𝑘
􏾟
𝑖=1

𝑥𝑗𝑖

Example 1.2.2. Terms such as 𝑥1𝑥2𝑥3𝑥4 and 𝑥3𝑥20𝑥32𝑥46 are monomials in both 𝑒4 and ℎ4. How‐
ever, the terms 𝑥21𝑥4𝑥5 and 𝑥46 are in ℎ4 but not in 𝑒4.

We are able to derive interesting, nontrivial properties about the various symmetric function
bases by considering their ordinary generating functions. For example, the ordinary generat‐
ing function for the sequence of elementary symmetric functions {𝑒𝑛}𝑛≥0 is given by,

𝐸(𝑡) = 􏾜
𝑛≥0

𝑒𝑛𝑡𝑛 = (1 + 𝑥1𝑡) ⋅ ... ⋅ (1 + 𝑥𝑘𝑡) ⋅ ... =􏾟
𝑖∈ℕ

(1 + 𝑥𝑖𝑡)

Likewise, it is not hard to see that the ordinary generating function for the homogeneous sym‐
metric functions {ℎ𝑛}𝑛≥0 is,

𝐻(𝑡) = 􏾜
𝑛≥0

ℎ𝑛𝑡𝑛 = (1 + 𝑥1𝑡 + 𝑥21𝑡2 + ...) ⋅ ... ⋅ (1 + 𝑥𝑘𝑡 + 𝑥2𝑘𝑡2 + ...) ⋅ ... =􏾟
𝑖∈ℕ

1
1 − 𝑥𝑖𝑡

And hence, remarkably, we discover the relation𝐻(𝑡)𝐸(−𝑡) = 1, therefore,

𝑛
􏾜
𝑗=0
(−1)𝑗𝑒𝑗ℎ𝑛−𝑗 = 0

Furthermore, we define the usual involution 𝜔 on symmetric functions by 𝜔(𝑒𝜆) = ℎ𝜆 for any
𝜆 ⊢ 𝑛. It is interesting to examine the properties of the involution 𝜔 on symmetric func‐
tions whose coefficients have combinatorial interpretations. For example. in the case of the
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chromatic symmetric function (CSF), applying the involution𝜔 transforms the CSF to another
symmetric function whose coefficients give information about the acyclic orientations of the
original graph.

Lastly, as an example of the statement from the end of the previous section about expressing
the basis elements of different symmetric function bases in‐terms of themonomial symmetric
functions, we give the following lemma, which also reappears later in this chapter.

Lemma 1.2.2 ([15]). Let 𝜆 = (𝜆1, ..., 𝜆𝑘), 𝜇 = (𝜇1, ..., 𝜇ℓ) ⊢ 𝑛 be partitions and𝑀𝜆,𝜇 the number of
0, 1-matrices with row sums 𝜆𝑖 and column sums 𝜇𝑗, then,

𝑒𝜇 = 􏾜
𝜆⊢𝑛

𝑀𝜆,𝜇𝑚𝜆

PowerSumBasis The power sum symmetric functionbasis is definedby {𝑝𝜆 = 𝑝𝜆1 ⋅...⋅𝑝𝜆𝑙(𝜆) | 𝜆 ⊢
𝑛}, where,

𝑝𝑘 = 􏾜
𝑖∈ℕ

𝑥𝑘𝑖

Furthermore, the ordinary generating function for the sequence { 𝑝𝑛𝑛 }𝑛≥0

𝑃(𝑡) = 􏾜
𝑛∈ℕ

𝑝𝑛
𝑛 𝑡

𝑛 = log 􏿵􏾟
𝑗∈ℕ

1
1 − 𝑥𝑗𝑡

􏿸 (1.1)

Proof. By Taylor expansion, log 􏿵 1
1−𝑥􏿸 = ∑𝑛∈ℕ

1
𝑛𝑥

𝑛. Hence,

𝑃(𝑡) = 􏾜
𝑛∈ℕ

𝑝𝑛
𝑛 𝑡

𝑛 = 􏾜
𝑛∈ℕ

􏾜
𝑗∈ℕ

1
𝑛(𝑥𝑗𝑡)

𝑛 = 􏾜
𝑗∈ℕ

log 􏿵 1
1 − 𝑥𝑗𝑡

􏿸 = log 􏿵􏾟
𝑗∈ℕ

1
1 − 𝑥𝑗𝑡

􏿸

More generally, we have the relation,

log 􏿵􏾟
𝑖,𝑗
(1 − 𝑥𝑖𝑦𝑗)−1􏿸 = 􏾜

𝑛≥1

1
𝑛𝑝𝑛(𝑥)𝑝𝑛(𝑦)

where 𝑥 = (𝑥1, 𝑥2, ...) and 𝑦 = (𝑦1, 𝑦2, ...). In particular, we notice the expression for the gener‐
ating function 𝐻(𝑡) of the homogeneous symmetric functions appear in the expression (1.1).
Based on this observation and with a little more manipulation, we derive,

ℎ𝑛 = 􏾜
𝜆⊢𝑛

𝑧−1𝜆 𝑝𝜆, and by applying 𝜔, 𝑒𝑛 = 􏾜
𝜆⊢𝑛

𝜀𝜆𝑧−1𝜆 𝑝𝜆

where 𝜀𝜆 = (−1)𝑛−𝑙(𝜆) and 𝑧𝜆 is the number of permutations of 𝜎 ∈ 𝔖𝑛, where𝔖𝑛 is the symmet‐
ric group on 𝑛 letters, such that 𝜎 commuteswith a fixed𝑤𝜆 ∈ 𝔖𝑛with cycle type𝜆, namely, the
blocks of 𝑤𝜆 in reduced form have lengths corresponding to the components of 𝜆. We direct
the reader to Chapter 7 of [15] for a full derivation. Indeed, generating functions are one of
the primary tools to discover relationships between symmetric function bases, among a host
of other interesting applications.
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Schur and Skew Schur Symmetric Functions The Schur and Skew Schur symmetric func‐
tions are defined via fillings of Young diagrams (also known as Young tableaux, or Ferrers di‐
agrams), which have a deep connection to the mathematical study of representation theory,
particularly the representations of the symmetric group. We begin by giving an overview of
Young tableaux. Then, we define the Schur and Skew Schur functions.

A Young diagram is a representation of a partition 𝜆 ⊢ 𝑛 as a left‐justified collection of boxes,
with the number of boxes in each row corresponding to one component of 𝜆, and the rows are
weakly decreasing in size from top to bottom. An example of a Young diagram for the partition
𝜆 = (4, 2, 2, 1) is given in Figure 1.1.

4
2
2

1
𝜆 = (4, 2, 2, 1)

1 2 5 6
7 3
8 4
9

Standard Young tableau
with shape 𝜆 = (4, 2, 2, 1)

1 1 1 9
2 4
5 5
7

Semistandard Young
tableau with shape

𝜆 = (4, 2, 2, 1)

Figure 1.1: Examples of standard and semistandard Young tableaux.

The Schur symmetric functions can be defined combinatorially in‐terms of Young tableaux,
although there aremany otherways to define the Schur functions, such as in a purely algebraic
way. A standard Young tableau of a Young diagramwith shape 𝜆 is a way of assigning a unique
number from {1, 2, ..., 𝑛} to eachbox such that the entries are strictly increasing from left to right
and from top to bottom. An example of a standard Young tableau with shape 𝜆 = (4, 2, 2, 1) is
given in Figure 1.1. In total, there are 180 standard Young tableaux with shape 𝜆

A related concept is that of semistandard Young tableaux, which is defined in the same way
as standard Young tableaux, except the entries are strictly increasing from left to right, while
they can be weakly increasing from top to bottom. The infinite set of semistandard Young
tableaux of shape 𝜆 with entries in ℕ (with repeats allowed) is denoted as SSYT(𝜆). Alterna‐
tively, we can restrict the entries for the fillings to come from another partition 𝜇 ⊢ 𝑛 where
𝜇 = (𝜇1, 𝜇2, ..., 𝜇𝑘), indicating that there are 𝜇𝑖 boxes filled with the number 𝑖. In this case, we
let SSYT(𝜆, 𝜇) refer to the (finite) set of semistandard Young tableaux with shape 𝜆 and fillings
from 𝜇. The Schur symmetric functions are defined as,

𝑠𝜆 = 􏾜
𝑇∈SSYT(𝜆)

𝑥𝑇

where 𝑥𝑇 denotes the monomial ∏𝑖∈ℕ 𝑥
𝑇(𝑖)
𝑖 where 𝑇(𝑖) is the number of 𝑖’s that appear in the

semistandard tableau 𝑇. For example, if 𝑇 is the semistandard tableau in Figure 1.1, then
𝑥𝑇 = 𝑥31𝑥2𝑥4𝑥25𝑥7𝑥9. Moreover, the set {𝑠𝜆 ∶ 𝜆 ⊢ 𝑛} forms aℚ‐basis for Λ𝑛.

The skew Schur functions are defined similarly, except they are indexed by the skew partitions
𝜆/𝜇where 𝜇 ≤ 𝜆 (𝜇 is contained in 𝜆) indicating that if 𝜇 = (𝜇1, 𝜇2, ..., 𝜇𝑚) and 𝜆 = (𝜆1, 𝜆2, ..., 𝜆𝑛),
then 𝑚 ≤ 𝑛 and 𝜇𝑖 ≤ 𝜆𝑖 for all 1 ≤ 𝑖 ≤ 𝑚. The shape of 𝜆/𝜇 is the shape of 𝜆 overlayed with
the shape of 𝜇, deleting all the boxes that intersect. And example of 𝜆/𝜇 is given in Figure 1.2
where 𝜆 = (5, 4, 4, 2, 1) and 𝜇 = (4, 3, 2).

We now define,
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Figure 1.2: Shape of 𝜆/𝜇 where 𝜆 = (5, 4, 4, 2, 1) and 𝜇 = (4, 3, 2).

𝑠𝜆/𝜇 = 􏾜
𝑇∈SSYT(𝜆/𝜇)

𝑥𝑇

Young tableaux are one of themain objects of study in algebraic combinatorics, and havemany
nice combinatorial properties. Previously, we had mentioned that there were 180 standard
Young tableaux with shape (4, 2, 2, 1). One question that arises is whether there is a simple way
to count the number of standard Young tableaux of a certain type. In fact, there is a beautiful
formula, discovered by Frame, Robinson, and Thrall [16], called the hook length formula, which
does exactly that. We end our discussion of symmetric function bases by explaining the hook
length formula.

Let 𝜆 ⊢ 𝑛 be a partition and let [𝜆] denote the set of squares in the Young diagramwith shape 𝜆.
We label each box of [𝜆]with an ordered pair (𝑖, 𝑗) in the usual sense, with (0, 0) corresponding
to the top, leftmost box, with 𝑖 increasing as we move to the right and 𝑗 increasing as we move
down. An example of the ordering of the partition 𝜆 = (5, 4, 4, 2, 1) is given in Figure 1.3.

(0,0) (1,0) (2,0) (3,0) (4,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3)

(0,4)

Figure 1.3: Ordering of [𝜆] where 𝜆 = (5, 4, 4, 2, 1).

We then define then hook of a box (𝑖, 𝑗) to be the boxes extending strictly to the left of (𝑖, 𝑗) and
strictly below (𝑖, 𝑗) that is, the set ℎ𝑖,𝑗 = {(𝑥, 𝑦) | 𝑥 ≥ 𝑖 & 𝑦 ≥ 𝑗} and the hook length to be #ℎ𝑖,𝑗.
An example of a hook and hook length are given in Figure 1.4. Let 𝑓𝜆 denote the number of
standard Young tableaux of shape 𝜆, then the hook length formula states,

Figure 1.4: Hook of (0, 1) in [𝜆] where 𝜆 = (5, 4, 4, 2, 1). The hook length is #ℎ0,1 = 7.

𝑓𝜆 = 𝑛!
∏(𝑖,𝑗)∈[𝜆] #ℎ𝑖,𝑗

(1.2)
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There are many proofs of the hook length formula, but one that is particularly elegant from
Greene, Nijenhuis, andWilf [7] designs a randomized algorithm as follows: We first pick a box
(𝑖, 𝑗) in the Young diagram at random, and then pick a box in ℎ𝑖,𝑗. We continue this process until
the selected box lies on the right‐most or bottom‐most boundary of the diagram. In particu‐
lar, let 𝜇 be the partition corresponding to the Young diagram with the box (𝑖0, 𝑗0) residing on
the right‐most or bottom‐most boundary removed. Then, the probability that the algorithm
terminates on (𝑖0, 𝑗0) is exactly 𝑓𝜇/𝑓𝜆. The result follows by noticing that 𝑓𝜆 = ∑𝜇↑𝜆 𝑓𝜇 and by
normalization of probability measures, where 𝜇 ↑ 𝜆 denotes that 𝜇 is constructed from 𝜆 by
removing a boundary square, as previously stated.

1.3 Chromatic Symmetric Functions

The chromatic symmetric function (CSF) was introduced by Richard Stanley in his 1995 semi‐
nal work,A Symmetric Function Generalization of the Chromatic Polynomial of a Graph [14]. Given
a graph 𝐺 = (𝑉, 𝐸), the CSF of 𝐺 is denoted as 𝑋𝐺 and is defined as a sum over all proper color‐
ings 𝜙 ∶ 𝑉 → ℕ of 𝐺. For readers who are unfamiliar, a proper coloring 𝜙 of 𝐺 is a labeling, or
”coloring”, of the vertex set of 𝐺 such that if (𝑢, 𝑣) ∈ 𝐸, then 𝜙(𝑢) ≠ 𝜙(𝑣). We now define,

𝑋𝐺 =􏾜
𝜙
x𝜙 =􏾜

𝜙
􏾟
𝑣∈𝑉

𝑥𝜙(𝑣)

It is not hard to justify that 𝑋𝐺 is indeed a symmetric function. Namely, we can identify the
verticeswith the same labeling in any proper coloring, andpermute the colorings associated to
each of these sets to obtain another proper coloring. Indeed, permuting the colors associated
to each set has the effect of permuting the subscript of the terms in each monomial.

Next, we review some basic properties of the chromatic symmetric function that will be fun‐
damental to our later work. Firstly, we have the following result.

Lemma 1.3.1. Let 𝐺 = (𝑉1, 𝐸1) and𝐻 = (𝑉2, 𝐸2) be graphs, and let 𝐺+𝐻 denote the disjoint union
of 𝐺 and 𝐻, then,

𝑋𝐺+𝐻 = 𝑋𝐺 ⋅ 𝑋𝐻

Proof. Let 𝜙𝐺 ∶ 𝑉1 →ℕ and 𝜙𝐻 ∶ 𝑉2 →ℕ. Let 𝜙𝐺+𝐻 ∶ 𝑉1 ∪𝑉2 →ℕ be the unique mapping for
which 𝜙𝐺+𝐻 |𝑉1 ≡ 𝜙𝐺 (the restriction of 𝜙𝐺+𝐻 to the domain 𝑉1) and 𝜙𝐺+𝐻 |𝑉2 ≡ 𝜙𝐻. Then 𝜙 is a
proper coloring of𝐺+𝐻 if and only if 𝜙𝐺 and 𝜙𝐻 are proper colorings of𝐺 and𝐻, respectively.
Hence,

𝑋𝐺 ⋅ 𝑋𝐻 = 􏾜
𝜙𝐺,𝜙𝐻

x𝜙𝐺x𝜙𝐻 = 􏾜
𝜙𝐺+𝐻

x𝜙𝐺+𝐻 = 𝑋𝐺+𝐻

In the next section, wewish to express the chromatic symmetric function in different symmet‐
ric function bases by finding a combinatorial interpretation of its coefficients.

1.3.1 Combinatorial Interpretations of the CSF

Monomial Basis The easiest andmost intuitive basis bywhich to expand the CSF is themono‐
mial basis. We first define the augmented monomial symmetric functions as 􏾪𝑚𝜆 = 𝜆̃𝑚𝜆. We are
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now ready to present the interpretation of the CSF of a graph in the (augmented) monomial
basis.

Lemma 1.3.2. Let 𝜆 = (𝜆1, 𝜆2, ..., 𝜆𝑘) ⊢ 𝑛 = #𝑉 and 𝑎𝜆 be the number of partitions of 𝑉 into
components of size 𝜆1, 𝜆2, ..., 𝜆𝑘 such that there are no edges between any two vertices in the same
component.4 Then,

𝑋𝐺 = 􏾜
𝜆⊢𝑛

𝑎𝜆􏾪𝑚𝜆

Proof. The coefficient of the monomial 𝑥𝜆11 𝑥
𝜆2
2 ...𝑥

𝜆𝑘
𝑘 is the number of ways to choose a partition

of𝑉 into components of size𝜆1, 𝜆2, ..., 𝜆𝑘 such that there are no edges between any two vertices
in the same component, and then color a component of size 𝜆𝑖 with the color 𝑖 for each 𝑖 ∈
{1, ..., 𝑘}. Let 𝑟𝑖 be the number of components with size 𝜆𝑖, then there are 𝑟𝑖! ways to color the
vertices in the components with size 𝜆𝑖.

Therefore, we can reduce the problem of computing the CSF of a graph to counting the num‐
ber of partitions of 𝑉 into independent sets type 𝜆 ⊢ 𝑛. As it turns out, for certain families
of graphs, such as complete bipartite graphs and windmill graphs, this counting is relatively
simple, and allows us to compute the CSF easily (see Theorem 1.3.1).

Power Sum Basis Like the monomial basis, expressing the CSF in the power sum basis also
has a simple combinatorial interpretation, which is particularly useful in proving theorems
about the CSF. In this section, we outline Stanley’s original proof of this combinatorial inter‐
pretation, as well as a more modern proof based on the deletion‐contraction rule for a gener‐
alization of the CSF to weighted graphs. As a bit of notation, if 𝐺 = (𝑉, 𝐸) is a graph and 𝑆 ⊂ 𝐸,
then we denote by 𝐺(𝑆) = (𝑉, 𝑆) the subgraph of 𝐺 with edge set 𝑆. Moreover, we denote by
𝜆𝐺(𝑆) the partition of 𝑛 = |𝑉| formed by sorting the number of vertices in each connected com‐
ponent of 𝐺(𝑆) in weakly decreasing order. Where 𝐺 is obvious, we omit from the subscript
and simply write 𝜆(𝑆). We are now ready to state the result.

Lemma 1.3.3 ([14]).
𝑋𝐺 = 􏾜

𝑆⊂𝐸
(−1)|𝑆|𝑝𝜆(𝑆)

Proof. Fix 𝑆 ⊂ 𝐸. We have that,

𝑝𝜆(𝑆)(x) = 􏾜
𝜙∈𝐾𝑆

x𝜙

where 𝐾𝑆 is the set of all colorings which color the vertices within the same connected compo‐
nents of 𝐺(𝑆) with the same color. Hence,

􏾜
𝑆⊂𝐸

(−1)#𝑆𝑝𝜆(𝑆)(x) = 􏾜
𝑆⊂𝐸

(−1)#𝑆 􏾜
𝜙∈𝐾𝑆

x𝜙

=􏾜
𝜙
x𝜙 􏾜

𝑆⊂𝐸𝜙
(−1)#𝑆

4Such a set of independent vertices is, intuitively, called an independent set. If the sizes of a partition 𝑉 into
independent sets correspond to the parts of 𝜆, we call it a partition of 𝑉 into independent sets of type 𝜆.
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where the first sum is over all colorings (proper or not) 𝜙 ∶ 𝑉 → ℕ and the set 𝐸𝜙 refers to the
set of edges with both endpoints colored the same in 𝜙. Suppose that for a coloring 𝜙0, 𝐸𝜙0 is
nonempty, then,

􏾜
𝑆⊂𝐸𝜙

(−1)#𝑆 =
#𝐸𝜙0
􏾜
𝑘=0

(−1)𝑘􏿶
#𝐸𝜙0
𝑘
􏿹 = 0

by symmetry of binomial coefficients. Hence, the double sum (1.3) selects only the colorings
𝜙 that are proper, which is exactly the definition of 𝑋𝐺.

Before we give an alternative proof of this result, we first introduce the vertex weighted CSF as
defined by Logan and Spirkl (2020) [4].

Definition 1.3.1. Given a weighted graph 𝐺 = (𝑉, 𝐸, 𝜔) with 𝜔 ∶ 𝑉 → ℕ, we define the vertex
weighted chromatic symmetric function of 𝐺 as,

𝑋(𝐺,𝜔) =􏾜
𝜙
􏾟
𝑣∈𝑉

𝑥𝜔(𝑣)𝜙(𝑣)

where the sum is over all proper colorings 𝜙 ∶ 𝑉 → ℕ.

Furthermore, the main contribution of Crew and Spirkl was to provide a deletion‐contraction
rule for the vertex weighted CSF. This rule is inspired by the deletion‐contraction rule for the
chromatic polynomial, which is a primary tool for proving theorems. For the traditional CSF,
such a rule is not possible as any contraction of an edge necessarily changes the degree of the
symmetric function. We state this rule next.

Lemma 1.3.4 ([4]). Let 𝐺 = (𝑉, 𝐸, 𝜔) be a vertex weighted graph and let 𝑒 = (𝑢, 𝑣) ∈ 𝐸 be any edge.
Then,

𝑋(𝐺,𝜔) = 𝑋(𝐺\𝑒,𝜔) − 𝑋(𝐺/𝑒,𝜔/𝑒)

where 𝐺\𝑒 is the graph 𝐺 with edge 𝑒 removed, 𝐺/𝑒 is the graph with the vertices 𝑢 and 𝑣 contracted to
the vertex 𝑤, and (𝜔/𝑒)|𝑉−{𝑢,𝑣} ≡ 𝜔|𝑉−{𝑢,𝑣} with (𝜔/𝑒)(𝑤) = 𝜔(𝑢) + 𝜔(𝑣).

Proof. See Lemma 2 in [4], pg. 6.

We are now ready to present the proof of a generalization of Lemma 1.3.3.

Lemma 1.3.5 ([4]). Let 𝐺 = (𝑉, 𝐸, 𝜔) be a vertex weighted graph, then,

𝑋(𝐺,𝜔) = 􏾜
𝑆⊂𝐸

(−1)#𝑆𝑝𝜆(𝜔,𝑆)

where 𝜆(𝜔, 𝑆) is the partition of 𝑛 = ∑𝑣∈𝑉 𝜔(𝑣) whose components are the total weight of the vertices
in each connected component of 𝐺(𝑆).
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Proof. Let 𝐸 = {𝑒1, 𝑒2, ..., 𝑒𝑚}. We first apply the deletion‐contraction rule (Theorem 1.3.4) to the
edge 𝑒1, namely,

𝑋(𝐺,𝜔) = 𝑋(𝐺\𝑒1,𝜔) − 𝑋(𝐺/𝑒1,𝜔/𝑒1)

Next, we continue this decomposition by applying deletion‐contraction to the edge 𝑒2 in the
graphs (𝐺\𝑒1, 𝜔) and (𝐺/𝑒1, 𝜔/𝑒1), obtaining an expansion of𝑋(𝐺,𝜔) with four terms. Similarly, in
step 𝑖, we apply deletion‐contraction to the edge 𝑒𝑖 all 2𝑖−1 terms in the expansion of𝑋(𝐺,𝜔) until
we reach step𝑚, at which point we have the equation,

𝑋(𝐺,𝜔) = 􏾜
𝑆⊂𝐸

(−1)#𝑆𝑋(𝐺𝑆,𝜔𝑆) (1.3)

where (𝐺𝑆, 𝜔𝑆) is the graph 𝐺 with the edges 𝑆 contracted and deleting all the edges in 𝐸\𝑆 in
order of 𝑒1, 𝑒2, ..., 𝑒𝑚. It is clear that the graph (𝐺𝑆, 𝜔𝑆)hasno edges, andeachvertex corresponds
to one connected component in 𝐺(𝑆), since they are formed by the contraction of the vertices
in each connected components of 𝐺(𝑆). Furthermore, the weight of each vertex in (𝐺𝑆, 𝜔𝑆)
is the sum of the weights of the vertices in a unique connected component of 𝐺(𝑆), by our
definition of edge contraction on the weight function 𝜔. Lastly, we note that if 𝐾𝜆 the graph
with no edges and vertices of weight 𝜆 = (𝜆1, 𝜆2, ..., 𝜆𝑘), then𝑋𝐾𝜆 = 𝑝𝜆. Then, the result follows
immediately from (1.3).

Lemma 1.3.5 is indeed a true generalization of Lemma 1.3.3, as the latter result can be recov‐
ered simply by letting 𝜔 ≡ 1.

Lastly, we give a final characterization of the chromatic symmetric function in the power sum
basis by considering the lattice of contractionsℒ𝐺 of a graph𝐺, namely, the partially ordered set
whose elements are the connected partitions of vertices in 𝐺, and whose connections are an
ordering by refinement. First, we introduce a beautiful theorem in the study of posets called
theMöbius inversion formula, which generalizes the inclusion‐exclusion principle for counting
elements of set unions.

1

2

3

4

1̂ = ({1,2,3,4})

({1,2},{3,4}) ({1,2,3},{4}) ({1},{2,3,4})

({1,2},{3},{4}) ({1},{2,3},{4}) ({1},{2},{3,4})

0̂ = ({1},{2},{3},{4})

Figure 1.5: A graph (left) and the Hasse diagram of its lattice of contractionsℒ𝐺 (right).

Lemma 1.3.6 (Möbius inversion formula, [15]). Let 𝑃 be a poset such that if 𝑡 ∈ 𝑃, then the set
Ω𝑡 = {𝑦 ∈ 𝑃 ∶ 𝑦 ≤ 𝑡} has finite cardinality. Let 𝑓, 𝑔 ∶ 𝑃 → 𝐾, where 𝐾 is a field. Then,

𝑔(𝑡) = 􏾜
𝑠∈Ω𝑡

𝑓(𝑠), for all 𝑡 ∈ 𝑃
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if and only if

𝑓(𝑡) = 􏾜
𝑠∈Ω𝑡

𝑔(𝑠)𝜇(𝑠, 𝑡), for all 𝑡 ∈ 𝑃

where 𝜇 ∶ 𝑃 → ℤ is the Möbius (counting) function, defined by,

⎧⎪⎨
⎪⎩
𝜇(𝑠, 𝑠) = 1 for all 𝑠 ∈ 𝑃
𝜇(𝑠, 𝑢) = −∑𝑠≤𝑡<𝑢 𝜇(𝑠, 𝑡) for all 𝑠 < 𝑢 in 𝑃

Now, we directly get the following result for the CSF.

Lemma 1.3.7.
𝑋𝐺 = 􏾜

𝜋∈ℒ𝐺

𝜇(0̂, 𝜋)𝑝type(𝜋)

where 0̂ is the minimal element in ℒ𝐺, namely, the set {{𝑣} ∶ 𝑣 ∈ 𝑉(𝐺)}, and type(𝜋) where 𝜋 =
(𝑉1, 𝑉2, ..., 𝑉𝑘) ∈ ℒ𝐺 is the partition of |𝑉| obtained by sorting (|𝑉1|, |𝑉2|, ..., |𝑉𝑘|) inweakly decreasing
order. Moreover, 𝜇(0̂, 𝜋) is nonzero for every 𝜋 ∈ ℒ𝐺.

Proof. For each 𝜎 ∈ ℒ𝐺, define,

𝑋𝜎 =􏾜
𝜅
𝑥𝜅

where the sum is over all colorings 𝜅 ∶ 𝑉 → ℕ which give the same color to all vertices in the
same block of 𝜎 and if (𝑢, 𝑣) ∈ 𝐸, then 𝜅(𝑢) ≠ 𝜅(𝑣). Then, for each coloring 𝜅0 of 𝐺, there is a
unique 𝜎0 ∈ ℒ𝐺 such that 𝜅 is included in the sum in the definition of 𝑋𝜎0 . It follows that for
any 𝜋 ∈ ℒ𝐺,

𝑝type(𝜋) = 􏾜
𝜎≥𝜋

𝑋𝜎

and by the Möbius inversion formula (Lemma 1.3.6),

𝑋𝜋 = 􏾜
𝜎≥𝜋

𝑝type(𝜎)𝜇(𝜋, 𝜎)

Finally, the proof follows by noticing that𝑋0̂ = 𝑋𝐺, where the RHS is the chromatic symmetric
function of 𝐺.

1.3.2 Chromatic Bases

One interesting result about the chromatic symmetric function that has inspired much recent
work is forming a CSF basis for the set of symmetric functions. Surprisingly, we have the fol‐
lowing lemma of Cho and Willigenburg.

Lemma 1.3.8 ([2]). Let {𝐺𝑘}𝑘≥1 be a set of connected graphs such that 𝐺𝑘 has 𝑘 vertices for each 𝑘 ≥ 1.
Moreover, define 𝐺𝜆 = 𝐺𝜆1 +𝐺𝜆2 + ... +𝐺𝜆𝑙(𝜆) where the ”+” operation on graphs is as it is in Lemma
1.3.1, then {𝑋𝐺𝜆 ∶ 𝜆 ⊢ 𝑛} is aℚ-basis for Λ𝑛.
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Proof. Since the set {𝑝𝜆 ∶ 𝜆 ⊢ 𝑛} is a ℚ‐basis for Λ𝑛, it suffices to show that if 𝑋𝐺𝜆 = ∑𝛼⊢𝑛 𝑐𝛼𝑝𝛼,
then 𝑐𝜆 ≠ 0. However, it is clear that there exists an element 𝜋 ∈ ℒ𝐺𝜆 , namely the maximal
element 1̂ such that type(𝜋) = 𝜆, hence by Lemma 1.3.7, 𝑐𝜆 = 𝜇(0̂, 𝜋) ≠ 0. Moreover, since
{𝑋𝐺𝜆 ∶ 𝜆 ⊢ 𝑛} contains at most 𝑝(𝑛) unique elements and dim(Λ𝑛) = 𝑝(𝑛), it must be a ℚ‐basis
for Λ𝑛.

Furthermore, the set {𝑋𝐺𝑘}𝑘≥1 is algebraically independent, like the set {𝑒𝑘}𝑘≥1, such that one
may even consider calling the above lemma the Chromatic Version of the Fundamental Theo‐
rem of Symmetric Functions. Previous work such as [2, 6] has examined the bases formed by
CSFs of families of graphs with simple structures, such as paths and stars. In particular, the
main contribution of [2] was giving explicit expansions of several simple families of graphs in
known symmetric function bases in order to better understand chromatic bases. Their results
are summarized in the following lemma.

Lemma 1.3.9 ([2]). Let 𝐾𝑛 be the complete graph, 𝑆𝑛 be the star graph, 𝑃𝑛 be the path graph, and 𝐶𝑛
be the cycle graph, all on 𝑛 vertices. Then,

(i) 𝑋𝐾𝑛 = 𝑛!𝑒𝑛

(ii) 𝑋𝑆𝑛+1 =
𝑛
􏾜
𝑟=0
(−1)𝑟􏿶

𝑛
𝑟􏿹𝑝(𝑟+1,1𝑛−𝑟)

(iii) 𝑋𝑃𝑛 = 􏾜
𝜆=(𝑛𝑟𝑛 ,...,1𝑟1 )⊢𝑛

(−1)𝑛−∑
𝑛
𝑖=1 𝑟𝑖

(∑𝑛
𝑖=1 𝑟𝑖)!

∏𝑛
𝑖=1(𝑟𝑖)!

𝑝𝜆

(iv) 𝑋𝐶𝑛 = 􏾜
𝜆=(𝑛𝑟𝑛 ,...,1𝑟1 )⊢𝑛

(−1)𝑛−∑
𝑛
𝑖=1 𝑟𝑖

(∑𝑛
𝑖=1 𝑟𝑖)!

∏𝑛
𝑖=1(𝑟𝑖)!

􏿵1 +
𝑛
􏾜
𝑗=2
(𝑗 − 1)

𝑟𝑗
∑𝑛
𝑖=1 𝑟𝑖

􏿸𝑝𝜆 + (−1)𝑛𝑝𝑛

Proof. See Theorem 8 in [2], pg. 4.

We extend the results of [2] by giving explicit formulas for the chromatic symmetric function
of the complete bipartitie graph 𝐾𝑛,𝑚 and windmill graph 𝑊𝑘,𝑟 in the monomial symmetric
function basis, and the lollipop graph 𝐿𝑛,𝑐 in the power sum basis. The complete bipartite
graphs 𝐾𝑛,𝑚 are one of the most famously‐studied families of graphs, which consist of a sets
of 𝑛 independent vertices and 𝑚 independent vertices. Then, every possible edge between
the two sets is in the edge set of 𝐾𝑛,𝑚. The windmill graphs are a generalization of friendship
graphs. Specifically,𝑊𝑘,𝑟 is formed by taking 𝑟 independent copies of the complete graph 𝐾𝑘,
and adjoining the graphs together at one vertex. See Figure 1.6 for an example of a complete
bipartite and windmill graph.

Theorem1.3.1. Let𝐾𝑛,𝑚 be the complete bipartite graphwith 𝑛+𝑚 vertices and𝑊𝑘,𝑟 be the windmill
graph which is the composition of 𝑟 copies of 𝐾𝑘. Then,

(i) 𝑋𝐾𝑛,𝑚 = 􏾜
𝜆⊢(𝑛+𝑚)

􏾜
𝜇⊢𝑛
𝜇⊂𝜆

𝜆̃
𝜇̃ ⋅􏷾(𝜆 − 𝜇)

𝑛! ⋅ 𝑚!
𝜆1!𝜆2!...𝜆𝑙(𝜆)!

𝑚𝜆

(ii) 𝑋𝑊𝑘,𝑟 = (𝑘 − 1)!
𝑟 􏾜
𝜆⊢𝑟(𝑘−1)+1

𝑟1𝑀(𝜆−(1)),((𝑘−1)𝑟)𝑚𝜆

where 𝑟1 is the number of 1’s in 𝜆, and 𝑀(𝜇,((𝑘−1)𝑟) is the number of 𝑙(𝜇) × 𝑟 matrices with entires in
{0, 1} such that there are exactly (𝑘 − 1) 1s in each column and 𝜇𝑗 1s in the 𝑗th row.
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Proof. (i) By Lemma 1.3.2, for each partition 𝜆 ⊢ 𝑛 + 𝑚 the coefficient of 􏾪𝑚𝜆 in 𝑋𝐾𝑛,𝑚 is the
number of partitions of 𝑉 into independent sets of type 𝜆. Let 𝑉1 be the set of 𝑛 vertices in
𝐾𝑛,𝑚with no edges between them. Likewise, let𝑉2 be the set of𝑚 vertices in𝐾𝑛,𝑚with no edges
between then. Since for every 𝑢 ∈ 𝑉1 and 𝑣 ∈ 𝑉2, (𝑢, 𝑣) ∈ 𝐸(𝐾𝑛,𝑚), then any independent set
in 𝐾𝑛,𝑚 must be a subset of either 𝑉1 or 𝑉2. We first pick the sizes of the independent sets in
𝑉1, represented by 𝜇 = (𝜇1, ..., 𝜇𝑘) ⊂ 𝜆. Suppose that we have not chosen any independent sets
from 𝑉1, then there are 􏿴 𝑛𝜇1􏿷ways to choose an independent set of size 𝜇1, since each vertex in

𝑉1 in independent with respect to every other vertex in 𝑉1. Likewise, there are 􏿴𝑛−𝜇1𝜇2
􏿷 ways to

choose the independent set of size 𝜇2 from the remaining 𝑛 − 𝜇1 vertices in 𝑉1 after the first
independent set has already been chosen. Continuing in this way, there are,

𝑙(𝜇)
􏾟
𝑗1
􏿶
𝑛 − ∑𝑗1−1

ℓ=1 𝜇ℓ
𝜇𝑗1+1

􏿹 =
𝑛!

𝜇1!(𝑛 − 𝜇1)!
(𝑛 − 𝜇1)!

𝜇2!(𝑛 − 𝜇1 − 𝜇2)!
...

(𝑛 − ∑𝑗1−1
ℓ=1 𝜇ℓ)!

𝜇𝑙(𝜇)!(𝑛 − ∑
𝑙(𝜇)
ℓ=1 𝜇ℓ)!

= 𝑛!
𝜇1!𝜇2!...𝜇𝑙(𝜇)!

ways to choose independent sets with sizes corresponding to 𝜇 from the set 𝑉1 where each
independent set is distinct.5 It is not hard to see that, by the same logic, there are,

𝑙(𝜆)−𝑙(𝜇)
􏾟
𝑗2=1

􏿶
𝑚 − ∑𝑗2−1

ℓ=1 (𝜆 − 𝜇)ℓ
(𝜆 − 𝜇)𝑗2+1

􏿹 =
𝑚!

(𝜆 − 𝜇)1!(𝜆 − 𝜇)2!...(𝜆 − 𝜇)𝑙((𝜆−𝜇))!

ways to choose independent setswith sizes corresponding to𝜆−𝜇 from𝑉2where each indepen‐
dent set is distinct. Lastly, wemust account for the overcounting in the choice of independent
sets. Namely, if there are multiplicities in the partition 𝜇 or (𝜆 − 𝜇), then we are overcounting
the choices of independent sets with the size of these repeated numbers as the order in which
they are selected does not matter. To account for this, we divide each product in the sum by
1/𝜇̃ and 1/􏷾(𝜆 − 𝜇), respectively.

(ii) We first note that there are no nontrivial independent sets (those containing more than
one vertex) containing the center vertex (where all of the complete graphs are adjoined) in𝑊𝑘,𝑟,
since it is connected to every other vertex in𝑊𝑘,𝑟. Hence, for anypartition𝜆 = ((#𝑉)𝑟#𝑉 , ..., 1𝑟1) ⊢
#𝑉 such that 𝑟1 = 0, wemust have that the coefficient of𝑚𝜆 in𝑋𝑊𝑘,𝑟 is. 0. Therefore, we restrict
ourselves to partitions with 𝑟1 > 0.

Assuming that the central vertex is in an independent set of size 1, we wish to find the number
of ways to groups the remaining vertices, which can be thought‐of as 𝑟 independent copies of
𝐾𝑘−1 into independent sets of size 𝜆 − (1). We call the graph of𝑊𝑘,𝑟 with the central vertex and
all of its adjacent edges removed𝑊′

𝑘,𝑟. Moreover, by (i) in Lemma 1.3.9,

𝑋𝑊′
𝑘,𝑟
= (𝑋𝐾𝑘−1)

𝑟

= ((𝑘 − 1)!𝑒𝑘−1)𝑟

= (𝑘 − 1)!𝑟𝑒((𝑘−1)𝑟)
= (𝑘 − 1)!𝑟 􏾜

𝜆⊢𝑟(𝑘−1)
𝑀𝜆,((𝑘−1)𝑟)𝑚𝜆

5This is equivalent to the counting performed by ”multinomial coefficients”, which are not used here for im‐
proved clarity of the result.
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where we used Lemma 1.3.1 in the first step and Lemma 1.2.2 in the final step. Hence, by
the interpretation of the augmentedmonomial symmetric functions from Lemma 1.3.2, there
are, (1/ 􏾭𝜆 − (1))(𝑘 − 1)!𝑟𝑀(𝜆−(1)),((𝑘−1)!𝑟) ways to choose independent sets of size 𝜆 − (1) from𝑊′

𝑘,𝑟.
Therefore the coefficient of 􏾪𝑚𝜆 in 𝑋𝑊𝑘,𝑟 is (1/ 􏾭𝜆 − (1))(𝑘 − 1)!

𝑟𝑀(𝜆−(1)),((𝑘−1)!𝑟), or, equivalently, the
coefficient of 𝑚𝜆 in 𝑋𝑊𝑘,𝑟 is (𝜆̃/ 􏾭𝜆 − (1))(𝑘 − 1)!

𝑟𝑀(𝜆−(1)),((𝑘−1)!𝑟) = 𝑟1(𝑘 − 1)!𝑟𝑀(𝜆−(1)),((𝑘−1)!𝑟). Conve‐
niently, this selects all partitions such that 𝑟1 > 0, so we don’t need any restrictions in the sum
over 𝜆.

Example 1.3.1. Weverify the formula (ii) fromTheorem1.3.1 for the simple casewhere𝑊𝑘,𝑟 =
(𝑉, 𝐸) and 𝜆 = (1#𝑉). Since there is only one way to partition the vertex set into independent
sets each of size 1, namely, by putting each vertex into its own independent set, Lemma 1.3.2
tells us that the coefficient of 􏾫𝑚𝜆 in 𝑋𝑊𝑘,𝑟 , denoted by [􏾫𝑚𝜆]𝑊𝑘,𝑟 , should be exactly 1. That is,
[𝑚𝜆]𝑊𝑘,𝑟 = (#𝑉)! = (𝑟(𝑘 − 1) + 1)!.

We first compute the value of𝑀(1)𝑟(𝑘−1),((𝑘−1)𝑟), which is the number of 𝑟(𝑘 − 1) × 𝑟 0, 1‐matrices
such that there is a single 1 in each row and 𝑘 − 1 1s in each column. Every such matrix is a
permutation of the rows of the matrix𝐴which has𝐴𝑖,𝑗 = 1where (𝑖 − 1)(𝑘 − 1) < 𝑗 ≤ 𝑖(𝑘 − 1) and
𝐴𝑖,𝑗 = 0 otherwise. There are (𝑟(𝑘−1))! total such permutations. Moreover, for any (𝑖−1)(𝑘−1) <
𝑗1 < 𝑗2 ≤ 𝑖(𝑘 − 1), permuting rows 𝑗1 and 𝑗2 in 𝐴 does not change the matrix (since the rows
are identical). There are (𝑘 − 1)!𝑟 total such permutations. It follows that𝑀(1)𝑟(𝑘−1),((𝑘−1)𝑟) = 𝑟(𝑘 −
1)!/(𝑘 − 1)!𝑟.

Lastly, we note that 𝑟1 = 𝑟(𝑘 − 1) + 1 where 𝜆 = ((#𝑉)𝑟#𝑉 , ..., 1𝑟1). Finally, (ii) in Theorem 1.3.1
gives the following expression.

[𝑚𝜆]𝑊𝑘,𝑟 = (𝑘 − 1)!
𝑟 ⋅ (𝑟(𝑘 − 1) + 1)(𝑟(𝑘 − 1))!(𝑘 − 1)!𝑟 = (𝑟(𝑘 − 1) + 1)!

Interestingly, equation (ii) from Theorem 1.3.1 gives a correspondence between the numbers
𝑀𝜆,𝜇 under certain conditions and the number of independent sets in a graph. In our proof,
we relied on an algebraic abstraction to the elementary symmetric functions, however, one
wonders if the same result can be shown in a purely combinatorial way, as there is a simple
combinatorial interpretation of the coefficients𝑀𝜆,𝜇. It’s worth nothing that the coefficients
𝑀𝜆,𝜇 are related to theKostka numbers, which express the decomposition of permutationmod‐
ules in terms of the irreducible representations of the symmetric group, and hence play a key
role in the field of algebraic combinatorics.

Figure 1.6: Complete bipartite graph𝐾5,3 (left), windmill graph𝑊4,4 (center), and lollipopgraph
𝐿9,6 (right).
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A lollipop graph on 𝑛 vertices with girth 𝑐 < 𝑛 is the cycle graph 𝐶𝑐 with a path of length 𝑛 − 𝑐
attached to any vertex in the cycle. See Figure 1.6 for a representation of 𝐿9,6. Thenext theorem
gives an explicit formula for the chromatic symmetric function of any, arbitrary lollipop graph.
In the statement of the next theorem, we abuse the notation of the so‐called ”Kronecker delta”
by defining for a condition 𝑆 and an object𝑂,6

𝛿𝑆(𝑂) =
⎧⎪⎨
⎪⎩
1 if𝑂 satisfies 𝑆
0 if𝑂 does not satisfy 𝑆

Theorem 1.3.2. Let 𝐿𝑛,𝑐 be the unique lollipop graph on 𝑛 vertices with girth 𝑐, then,

𝑋𝐿𝑛,𝑐 = 􏾜
𝜆⊢𝑛

𝐶𝑛,𝑐𝜆 𝑝𝜆

where 𝜆 = (𝑛𝑟𝑛 , ..., 1𝑟1),

𝐶𝑛,𝑐𝜆 = 𝐶𝑛−1,𝑐𝜆−(1) ⋅ 𝛿{𝑟1>0}(𝜆) + 􏾜
{1<𝑘≤𝑛−𝑐∶𝑟𝑘>0}

𝐶𝑛−𝑘,𝑐𝜆−(𝑘)

+ 􏾜
{𝑛−𝑐<𝑘≤𝑛∶𝑟𝑘>0}

(𝑘 + 𝑐 − 𝑛) ⋅ (−1)(𝑛−𝑘)−(∑
𝑛
𝑖=1 𝑟𝑖−1)

(∑𝑛
𝑖=1 𝑟𝑖 − 1)! ⋅ 𝑟𝑘
∏𝑛

𝑖=1(𝑟𝑖)!
+ (−1)𝑛 ⋅ 𝛿{𝑟𝑛=1}(𝜆)

and,

𝐶𝑐+1,𝑐𝜆 = (−1)𝑐−∑
𝑐+1
𝑖=1 𝑟𝑖−1

(∑𝑐+1
𝑖=1 𝑟𝑖 − 1)! ⋅ 𝑟1
∏𝑐+1

𝑖=1 (𝑟𝑖)!
􏿵1 +

𝑐
􏾜
𝑗=2
(𝑗 − 1)

𝑟𝑗
∑𝑐+1
𝑖=1 𝑟𝑖 − 1

􏿸 ⋅ 𝛿{𝑟1>0}(𝜆) + (−1)𝑐𝛿{𝑟𝑐=1}(𝜆)

+ 􏾜
{1<𝑘≤𝑐+1∶𝑟𝑘>0}

(𝑘 − 1) ⋅ (−1)(𝑛−𝑘)−(∑
𝑐+1
𝑖=1 𝑟𝑖−1)

(∑𝑐+1
𝑖=1 𝑟𝑖 − 1)! ⋅ 𝑟𝑘
∏𝑐+1

𝑖=1 (𝑟𝑖)!
+ (−1)𝑐+1 ⋅ 𝛿{𝑟𝑐+1=1}(𝜆)

Proof. We proceed by induction on the length of the path adjoined to the cycle in 𝐿𝑛,𝑐, that is,
on 𝑛. For the base case (𝑛 = 𝑐 + 1), we attach a leaf arbitrarily to a vertex in the cycle graph
with 𝑐 vertices to form 𝐿𝑐+1,𝑐. Let 𝑒 ∈ 𝐸(𝐿𝑐+1,𝑐)7 be the unique leaf edge in 𝐿𝑐+1,𝑐. For a fixed
𝜆0 ⊢ 𝑛, we wish to apply Lemma 1.3.3 by counting the number of subsets 𝑆 ⊂ 𝐸(𝐿𝑐+1,𝑐) such
that 𝜆𝐿𝑛,𝑐(𝑆) = 𝜆0. We divide our analysis into three disjoint cases.

In the first case, we have 𝑒 ∉ 𝑆, in which case the unique leaf of 𝐿𝑐+1,𝑐 will always be discon‐
nected from the rest of the graph. Hence, if 𝑟1 = 0 in 𝜆0, there is no way to choose a subset 𝑆
such that 𝜆𝐿𝑛,𝑐(𝑆) = 𝜆0. Assume, then, that 𝑟1 > 0, then the number of ways to choose 𝑆 such
that 𝜆𝐿𝑛,𝑐(𝑆) = 𝜆0 is exactly the number of ways to choose a subset 𝑆0 ⊂ 𝐸(𝐶𝑐) where 𝐶𝑐 is the
cycle graph on 𝑐 vertices, such that 𝜆𝐶𝑐(𝑆0) = 𝜆0 − (1). Part (iv) of Lemma 1.3.9 completes the
argument, giving us the term,

(−1)𝑐−∑
𝑐+1
𝑖=1 𝑟𝑖−1

(∑𝑐+1
𝑖=1 𝑟𝑖 − 1)! ⋅ 𝑟1
∏𝑐+1

𝑖=1 (𝑟𝑖)!
􏿵1 +

𝑐
􏾜
𝑗=2
(𝑗 − 1)

𝑟𝑗
∑𝑐+1
𝑖=1 𝑟𝑖 − 1

􏿸 ⋅ 𝛿{𝑟1>0}(𝜆) + (−1)𝑐𝛿{𝑟𝑐=1}(𝜆)

6I credit Dr. Pascal Grange for introducing this notation to me.
7For a graph𝐺 = (𝑉, 𝐸), we let 𝐸(𝐺) = 𝐸, that is, 𝐸(𝐺) is the edge set of𝐺. Similarly, we say𝑉(𝐺) = 𝑉 is the vertex

set of 𝐺.
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In the second case, 𝑒 ∈ 𝑆 and 𝑆 ≠ 𝐸(𝐿𝑐+1,𝑐). In this case, we suppose that 𝑒 is in a connected
component of 𝐿𝑐+1,𝑐(𝑆) with vertex size 𝑘, where 𝑘 > 1 is fixed. The key observation of this
proof is that the remaining graph without the connected component containing 𝑒 is a path
(see Figure 1.7), so the number of ways to choose 𝑆 given 𝑒 is in a connected component of
size 𝑘 is the number of ways to choose a subset 𝑆1 ⊂ 𝐸(𝑃𝑛−𝑘) where 𝑃𝑛−𝑘 is the path graph on
𝑛 − 𝑘 vertices such that 𝜆𝑃𝑛−𝑘(𝑆1) = 𝜆 − (𝑘). Moreover, there are 𝑘 − 1 ways to position the
connected component containing 𝑒 on the graph of 𝐿𝑐+1,𝑐. Part (iii) of Lemma 1.3.9 completes
the argument, giving us the term,

􏾜
{1<𝑘≤𝑐+1∶𝑟𝑘>0}

(𝑘 − 1) ⋅ (−1)(𝑛−𝑘)−(∑
𝑐+1
𝑖=1 𝑟𝑖−1)

(∑𝑐+1
𝑖=1 𝑟𝑖 − 1)! ⋅ 𝑟𝑘
∏𝑐+1

𝑖=1 (𝑟𝑖)!

In the last case, 𝑆 = 𝐸, from which we get the term (−1)𝑐+1𝛿{𝑟𝑐+1=1}(𝜆).

𝑒

Figure 1.7: Fixing the size of the connected component containing 𝑒 in 𝐿9,8 to be 5, the remain‐
ing graph is always a path on 4 vertices, that is 𝑃4. Moreover, there are 4 ways to position the
blue edges.

For the inductive step, suppose that for any 𝜆0 ⊢ 𝑏, 𝐶𝑏,𝑐𝜆0 correctly counts the number of ways
to choose a subset 𝑆 ⊂ 𝐸(𝐿𝑏,𝑐) such that 𝜆𝐿𝑛,𝑐(𝑆) = 𝜆0, and 1 ≤ 𝑏 < 𝑛. Let 𝑒 be the unique leaf
edge in 𝐿𝑛,𝑐. In the first case, we suppose that 𝑒 ∉ 𝑆, in which case there are exactly 𝐶𝑛−1,𝑐𝜆−(1) ways
to choose a subset 𝑆 ⊂ 𝐸(𝐿𝑛,𝑐) with 𝜆(𝑆) = 𝜆 if 𝑟1 > 0, and 0 otherwise.

In the second case, 𝑒 ∈ 𝑆, and we consider the size of the connected component of 𝐿𝑛,𝑐(𝑆)
which contains 𝑒. Suppose the vertex size of this connected component is 1 < 𝑘 ≤ 𝑛 − 𝑐, then
the remaining graph besides the component containing 𝑒 is exactly 𝐿𝑛−𝑘,𝑐, from which we con‐
clude there are 𝐶𝑛−𝑘,𝑐𝜆−(𝑘) ways to choose a subset 𝑆 with 𝜆𝐿𝑛,𝑐(𝑆) = 𝜆. If the size of the connected
component containing 𝑒 is greater than 𝑛 − 𝑐, then the analysis is the same as in the base case,
namely, the remaining graph of 𝐿𝑛,𝑐(𝑆) except for the connected component containing 𝑒 is a
path graph. In this case, there are notably 𝑘 − (𝑛 − 𝑐) ways to place the connected component
containing 𝑒 onto the graph of 𝐿𝑛,𝑐. The result follows from Lemma 1.3.9.

We end with a short discussion about chromatic bases. Recently, it has been shown in [6] that
there is a simple algorithm for computing the CSF of a tree in the star basis. Moreover, by
determining the smallest partition of 𝑛 in lexicographic order that has a nonzero coefficient
in the star‐basis expansion of the CSF, they show that all trees of diameter less than 5 are dis‐
tinguished by the CSF. Furthermore, they prove that the set of chromatic symmetric functions
of all trees is a 𝑝(𝑛) − 𝑛 + 1 dimension subspace of the set of symmetric functions. It remains
to be shown what other nontrivial properties can be proven by examining the CSF in other
chromatic bases, such as the path basis.

Moreover, another question about chromatic bases is which of these bases are Schur positive,
namely, each basis element is a positive linear combination of Schur symmetric functions. For
example, the basis {𝑋𝐾𝑛 ∶ 𝑛 ≥ 1} is Schur positive as we have the relationship 𝑒𝑛 = 𝑠(1𝑛).
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Chapter 2

GRAPH PROPERTIES PRESERVED BY THE CSF

Stanley [14] gave a notable example of two nonisomorphic graphs on 5 vertices which share
the same chromatic symmetric function. This example negatively answers the question of
whether the chromatic symmetric function distinguishes all nonisomorphic graphs. However,
the question still remains open, and is conjectured to be true, for tree graphs (see Chapter 3).
A natural extension of Stanley’s counterexample is to obtain a complete classification of the
graph properties preserved by the chromatic symmetric function. In this section, we give a
review of the major graph and tree properties encoded in the chromatic symmetric function
known so‐far. The proofs for Lemmas 2.1.1, 2.1.2, 2.1.3, 2.2.1 were discovered independent
of a reference for this paper, although the results themselves are well‐known.

Figure 2.1: Stanley’s counterexample of two non‐isomorphic graphs on 5 vertices with the
same CSF. The coloring of each graph is proper and corresponds to the term 𝑥12𝑥22𝑥31 in their
CSF.

To review some notation from the previous section, we let [𝑝𝜆]𝐺 (or any other base, for that
matter) be the coefficient of 𝑝𝜆 in 𝑋𝐺.

2.1 Graph Properties Preserved by the CSF

2.1.1 Number of Vertices and Edges

It is not hard to see that the chromatic symmetric function preserves the number of edges and
vertices of the graphs to which it corresponds, which is summarized in the following lemma.

Lemma 2.1.1. Let 𝐺 = (𝑉, 𝐸) be a graph. 𝑋𝐺 preserves the number of vertices 𝑛 = #𝑉 and the
number of edges𝑚 = #𝐸 in 𝐺.

Proof. By definition, 𝑋𝐺 = ∑𝜅Π𝑣∈𝑉𝑥𝜅(𝑣) where 𝜅 ∶ 𝑉 → ℕ is a proper coloring of 𝐺. Hence,
each monomial in 𝑋𝐺 has degree 𝑛.

For the number of edges, we note that for an edge subset 𝑆 ⊆ 𝐸, 𝜆(𝑆) = (2, 1𝑛−2) if and only if
#𝑆 = 1. It follows immediately from Lemma 1.3.3 that the number of edges𝑚 = [𝑝(2,1𝑛−2)]𝐺.
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2.1.2 Number and Size of Connected Components

Like the number of vertices and edges, the number of connected components of a graph is
immediate from the combinatorial interpretation of the CSF in the power sum basis.

Lemma 2.1.2. 𝑋𝐺 preserves the size and number of connected components in 𝐺 = (𝑉, 𝐸).

Proof. Let 𝑋𝐺 = ∑𝜆⊢𝑛 𝑐𝜆𝑝𝜆, and let 𝜆0 = (𝜆1, 𝜆2, ..., 𝜆𝑙(𝜆)) be the largest partition of 𝑛 in lexico‐
graphic order such that 𝑐𝜆0 ≠ 0. By Lemma 1.3.3, 𝑐𝜆 ≠ 0 if and only if there is some subset of
edges 𝑆 ⊆ 𝐸 such that the connected components of 𝐺(𝑆) have size 𝜆1, 𝜆2, ..., 𝜆𝑙(𝜆), accordingly.
Furthermore, removing edges from𝐺 can only have the effect of increasing the number of con‐
nected components. It follows that 𝜆(𝑆) = 𝜆0 if and only if 𝑆 = 𝐸. Hence, 𝑙(𝜆0) is the number
of connected components in 𝐺 and (𝜆1, 𝜆2, ..., 𝜆𝑙(𝜆)) is the sequence of the sizes of connected
components in 𝐺.

2.1.3 Number of k-Edge Matchings

For 𝑘 ∈ ℤ+, a 𝑘‐edge matching is a subset of edges 𝑆 ⊆ 𝐸 such that #𝑆 = 𝑘 and each edge in
𝑆 is disjoint from every other edge in 𝑆. In other words, each edge in 𝑆 connects two unique
vertices in 𝐺.

Lemma 2.1.3. Let 𝑘 ∈ ℤ+. 𝑋𝐺 preserves the number of 𝑘-edge matchings of 𝐺.

Proof. We will once again consider the power sum symmetric function basis. The number of
𝑘‐edge matchings is simply the number of ways to choose 𝑆 ⊆ 𝐸 such that there are exactly 𝑘
connected components of size 2 in𝐺(𝑆) and 𝑛−2𝑘 connected components of size 1. By Lemma
1.3.3, this number is [𝑝(2𝑘,1𝑛−2𝑘)] in the power sum expansion of 𝑋𝐺.

2.1.4 Number of Triangles

Agraph triangle is defined as𝐾3, or the complete graphof 3 vertices. Thenumber of triangles in
a graph𝐺 is the number of induced subgraphs of 𝐾3 that exist in𝐺. For example, the complete
graph 𝐾𝑛 has 􏿴𝑛

3
􏿷 triangles (one for each triplet of vertices). The following clever argument

from Orellana and Scott [13] establishes that the chromatic symmetric function captures the
number of triangles in a graph.

Lemma 2.1.4 ([13]). 𝑋𝐺 preserves the number of triangles, 𝑇𝐺, in 𝐺 = (𝑉, 𝐸).

Proof. Let 𝑆(2,2) be the number of 2‐edge matchings in 𝐺 (see Subsection 2.1.3). By Lemma
2.1.3, 𝑆(2,2) = [𝑝(22,1𝑛−22 )] in 𝑋𝐺. Furthermore, let 𝑆(3) be the number of edge subsets of size 2
such that 𝐺(𝑆) contains three connected vertices. We have that 􏿴#𝐸

2
􏿷 = 𝑆(2,2) + 𝑆(3). By Lemma

2.1.1, 𝑋𝐺 preserves #𝐸. It follows directly that 𝑋𝐺 preserves 𝑆(3). Finally, by Lemma 1.3.3,
[𝑝3,1(𝑛−3)] = 𝑆(3) + 𝑇𝐺, so 𝑋𝐺 preserves the number of triangles in 𝐺.

2.1.5 Sum of the Vertex Degrees Squared

In general, the chromatic symmetric function cannot distinguish thedegree sequenceof graphs,
as there are pairs of nonisomorphic graphs known for which their chromatic symmetric func‐
tion is the same, yet they have differing degree sequences (such as Stanley’s counterexample
in Figure 3.2). However, for the special case of trees, the degree sequence is known to be pre‐
served by the CSF (see Section 2.2.2). A slightly weaker result is known that the sum of the
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squares of the degrees in general graphs are preserved by their CSFs. This result was proven
originally by Orellana and Scott [13].

Lemma 2.1.5 ([13]). 𝑋𝐺 preserves the sum of the squared vertex degrees of a graph 𝐺 = (𝑉1, 𝐸1),
namely the quantity,

􏾜
𝑣∈𝑉(𝐺)

𝑑(𝑣)2

Proof. Let 𝑆(2,2) and 𝑆(3) be defined as in the proof of Lemma 2.1.4. In particular, 􏿴#𝐸
2
􏿷 = 𝑆(2,2) +

𝑆(3), so by Lemma 2.1.1, 𝑋𝐺 preserves 𝑆(3). Suppose that we are given another graph 𝐻 =
(𝑉2, 𝐸2) such that 𝑋𝐺 = 𝑋𝐻. We can count 𝑆(3) by noting that it is uniquely determined by
the choice of a central vertex and two vertices incident to the central vertex. In specific, since
𝑋𝐺 = 𝑋𝐻, the number of ways to pick a central vertex and then pick two edges incident to that
vertex is the same in both 𝐺 and𝐻. In equations,

􏾜
𝑣∈𝑉1

􏿶
𝑑𝐺(𝑣)
2 􏿹 = 􏾜

𝑣∈𝑉2
􏿶
𝑑𝐻(𝑣)
2 􏿹 ⟹ 􏾜

𝑣∈𝑉1
(𝑑𝐺(𝑣)2 − 𝑑𝐺(𝑣)) = 􏾜

𝑣∈𝑉2
(𝑑𝐻(𝑣)2 − 𝑑𝐻(𝑣))

⟹ 􏾜
𝑣∈𝑉1

𝑑𝐺(𝑣)2 = 􏾜
𝑣∈𝑉2

𝑑𝐻(𝑣)2

where the last implication follows fromLemma2.1.1 and the fact that, for anygraph,∑𝑣∈𝑉 𝑑(𝑣) =
2 ⋅ #𝐸.

2.1.6 Girth

Girth is one of themain graph invariants used to classify and study graphs. The girth of a graph
is the length of the shortest cycle within a graph. For example, the cycle graph 𝐶𝑛 clearly has
girth 𝑛 for 𝑛 ≥ 3. More interestingly, the famous Petersen graph has a girth of 5. In 2008, Martin
et al. [12] showed that the chromatic symmetric function of a graph preserves its girth, which
is summarized in the following lemma.

Lemma 2.1.6 ([12]). 𝑋𝐺 preserves the girth 𝑔 of 𝐺.

Proof. To begin, let 𝑘 ∈ ℤ+ such that 𝑘 > 𝑛 − 𝑔 + 1. It follows that 𝑛 − 𝑘 < 𝑔 − 1. We will show
that for a subset 𝑆 ⊂ 𝐸, 𝑙(𝜆(𝑆)) = 𝑘 if and only if #𝑆 = 𝑛 − 𝑘. Firstly, since 𝑛 − 𝑘 < 𝑔, any such
subset 𝑆must be acyclic, and therefore𝐺(𝑆)has exactly 𝑘 connected components.1 Alternately,
suppose that 𝐺(𝑆) has exactly 𝑘 connected components, then 𝑙(𝜆(𝑆)) = 𝑘. The maximum size
of any component of 𝐺(𝑆) is 𝑛 − (𝑘 − 1) < 𝑔, so 𝐺(𝑆)must be acyclic, therefore it has 𝑛 − 𝑘 edges.
Lemma 1.3.3 implies that,

􏾜
𝜆⊢𝑛
𝑙(𝜆)=𝑘

[𝑝𝜆]𝐺 = 􏾜
𝑆⊆𝐸
𝜆(𝑆)=𝜆

(−1)#𝑆 = 􏾜
𝑆⊆𝐸

#𝑆=𝑛−𝑘

(−1)#𝑆 = (−1)𝑛−𝑘 ⋅ 􏿶
#𝐸
𝑛 − 𝑘􏿹

1It is not hard to show this fact by induction. Namely, suppose 𝐺 is an acyclic graph with 𝑛 − 𝑒 edges and 𝑘
connected components. Since𝐺 is acyclic, removing an edgemust disconnect one connected component into two
connected components, giving a graph 𝐺′ with 𝑛 − (𝑒 + 1) edges and 𝑘 + 1 connected components. Clearly, once 𝐺′
has 𝑛 connected components, it is the empty graph on 𝑛 vertices, so 𝑛 − (𝑒 + (𝑛 − 𝑘)) = 0, hence 𝑒 = 𝑘.
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Now, suppose that 𝑘 = 𝑛 − 𝑔 + 1. We will show that for a subset 𝑆 ⊆ 𝐸, 𝐺(𝑆) has 𝑘 connected
components if and only if either it (1) has 𝑛 − 𝑘 edges or (2) is a cycle of length 𝑔. To begin,
suppose that 𝐺(𝑆) has 𝑘 connected components. If #𝑆 = 𝑛 − 𝑘, we are done. So, suppose that
#𝑆 ≠ 𝑛 − 𝑘, that is, #𝑆 ≥ 𝑛 − 𝑘 + 1 = 𝑔, then by definition of the girth 𝑔, 𝐺(𝑆) must contain a
cycle 𝐶. However, since 𝐺(𝑆) has 𝑘 connected components, there are at least 𝑘 − 1 vertices that
do not belong to 𝐶. It follows directly that 𝑔 ≤ #𝑉(𝐶) ≤ 𝑛 − (𝑘 − 1) = 𝑔, so 𝐶 is a cycle of length
𝑔. Furthermore, 𝑆 cannot have any edges that do not belong to 𝐶, since this would imply that
𝐺(𝑆) has fewer than 𝑘 components.

Going in the other direction, (1) implies that 𝐺(𝑆) has 𝑘 components by the same reasoning as
before. Alternately, if 𝐺(𝑆) is a cycle of length 𝑔 = 𝑛 − 𝑘 + 1, then there are 𝑘 − 1 vertices not in
the cycle, hence 𝐺(𝑆) has 𝑘 connected components. Letting Γ denote the set of 𝑔 cycles in 𝐺,
we have that,

􏾜
𝜆⊢𝑛
𝑙(𝜆)=𝑘

[𝑝𝜆]𝐺 = 􏾜
𝑆⊆𝐸
𝜆(𝑆)=𝜆

(−1)#𝑆 +􏾜
𝐶∈Γ
(−1)#𝑉(𝐶) = (−1)𝑛−𝑘 ⋅ 􏿶

#𝐸
𝑛 − 𝑘􏿹

+ (−1)𝑛−𝑘+1 ⋅ #Γ ≠ (−1)𝑛−𝑘 ⋅ 􏿶
#𝐸
𝑛 − 𝑘􏿹

since #Γ > 0. Let 𝑘 be the largest such that ∑ 𝜆⊢𝑛
𝑙(𝜆)=𝑘

[𝑝𝜆]𝐺 ≠ (−1)𝑛−𝑘 ⋅ 􏿴 #𝐸
𝑛−𝑘
􏿷. It follows that 𝑔 =

𝑛 − 𝑘 + 1.

2.2 Tree Properties Preserved by the CSF

2.2.1 Number of Subtrees with j Vertices

A subtree is a connected subgraph of a tree. In the power sum symmetric function basis, it
is straightforward to see that chromatic symmetric function of a tree captures the number of
subtrees with 𝑗 ∈ {1, ..., 𝑛} vertices.

Lemma 2.2.1. Let 𝑇 be a tree graph. Then 𝑋𝑇 preserves the number of subtrees of 𝑇 with 𝑗 vertices
for 𝑗 ∈ {1, ..., 𝑛}.

Proof. Any subgraph of a tree with one connected component of size 𝑗 and all other connected
components of size 1must be a subtree with 𝑗 vertices adjoined with 𝑛− 𝑗 independent vertices.
Likewise, if 𝑆 ⊆ 𝐸 is the edge set of a subtree with 𝑗 vertices, then 𝐺(𝑆) has one connected
component of size 𝑗 and 𝑛 − 𝑗 connected components of size 1. It follows from Lemma 1.3.3
that the number of subtrees with 𝑗 vertices is [𝑝(𝑗,1𝑛−𝑗)].

2.2.2 Degree and Path Sequence

The degree sequence of a graph𝐺 is the set of vertex degrees in𝐺 sorted in weakly decreasing or‐
der. Similarly, the path sequence of 𝐺 is defined as the sequence 𝑃(𝐺) = (𝑃0(𝐺), 𝑃1(𝐺), ..., 𝑃𝜌(𝐺)),
where𝑃𝑖(𝐺) is the number of inducted path subgraphs𝑃𝑖 are contained in𝐺, and 𝜌 is the length
of the longest induced path in 𝐺.

It was proven by Martin, Morin, and Wagner [12] in 2008 that the chromatic symmetric func‐
tion determines another graph polynomial, called the bivariate subtree polynomial S𝑇 of a tree
𝑇. In specific, S𝑇 is defined in the following way,

S𝑇 = S𝑇(𝑞, 𝑟) = 􏾜
subtrees 𝑆

𝑞#𝑆𝑟#𝐿(𝑆)
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where 𝐿(𝑆) is the set of leaf edges in 𝑇(𝑆). Furthermore, it is known that the bivariate subtree
polynomial preserves the degree sequence and path sequence of a graph. We direct the reader
to [1] for a full proof that S𝑇 preserves the degree and path sequences of 𝑇.

In particular, [12] proved that the bivariate subtree polynomial can be expressed as a linear
combination over the partitions 𝜆 ⊢ 𝑛 = #𝑉 of the number of subsets of the edge set 𝐸(𝐺)
such that 𝜆(𝑆) = 𝜆. By Lemma 1.3.3, this implies that 𝑋𝑇 contains enough information to
reconstruct S𝑇, when expressed in the power sum basis. The formal statement of the theorem
from [12] is given next.

Lemma 2.2.2 ([12]). For every 𝑛 ≥ 1 and for every tree 𝑇 with 𝑛 vertices,

S𝑇(𝑞, 𝑟) =
𝑛−1
􏾜
𝑖=1

𝑖
􏾜
𝑗=1
𝑞𝑖𝑟𝑗 􏾜

𝜆⊢𝑛
𝜙(𝜆, 𝑖, 𝑗)𝑐𝜆(𝑇)

where

𝜙(𝜆, 𝑖, 𝑗) = (−1)𝑖+𝑗􏿶
𝑙(𝜆) − 1

𝑙(𝜆) − 𝑛 + 𝑖􏿹
𝑗
􏾜
𝑑=1
(−1)𝑑􏿶

𝑖 − 𝑑
𝑗 − 𝑑􏿹

𝑙(𝜆)
􏾜
𝑘=1

􏿶
𝜆𝑘 − 1
𝑑 􏿹

and 𝑋𝑇 = ∑𝜆⊢𝑛 𝑐𝜆(𝑇)𝑝𝜆.

Proof. See Theorem 1 in [12], pg. 7.

Using their result, [12] showed that the chromatic symmetric function distinguishes the infi‐
nite family of spider trees. That is, the degree and path sequences of 𝑇 are sufficient to deter‐
mine 𝑇, if 𝑇 is a spider.

2.2.3 Trunk Size and Twig Sequence

Crew [3] extended the result of [12] by showing that the information contained in S𝑇 alonside
the known properties which are preserved by 𝑋𝑇 are sufficient to recover the size of the trunk
and the length of the twigs in any tree 𝑇.

The trunk of a tree 𝑇, denoted by 𝑇∘, is the minimal subtree which contains all the vertices of
degree at least 3 in 𝑇. By contrast, a twig corresponding to a leaf 𝑙 of 𝑇 is the longest path in 𝑇
containing 𝑙 such that every vertex which is not an endpoint of the twig has degree 2. We give
a rough proof that 𝑋𝑇 preserves 𝑇∘, but refer the reader to [3] for the proof that the length of
the twigs are preserved.

Lemma 2.2.3 ([3]). From 𝑋𝑇, we can recover (i) the size of 𝑇∘ and (ii) the length of all twigs of 𝑇.

Proof. (of (i)) Suppose that 𝑇 has 𝑎 leaves. In particular, by Lemma 2.2.1, we can recover the
value 𝑎 from𝑋𝑇. Suppose that 𝑆 is a subtree of 𝑇 with 𝑎 leaves. Then, 𝑆must contain the trunk
𝑇∘. Moreover, 𝑆must contain every edge which is adjacent to a vertex of degree greater than 3.
Hence, the smallest subtree with 𝑎 leaves is the subtree which contains the trunk 𝑇∘ and one
edge for each of the 𝑎 leaves in 𝑇. From Lemma 2.2.2, we can recover S𝑇 from 𝑋𝑇. From S𝑇,
we find the smallest value 𝑣 such that there exists a subtree of 𝑇 with 𝑣 vertices and 𝑎 leaves. It
follows from the above reasoning that #𝑉(𝑇∘) = 𝑣 − 𝑎. The proof of (ii) follows from a simple
argument and can be found in [3].
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Chapter 3

STANLEY’S ISOMORPHISM CONJECTURE

Professor Richard Stanley not only introduced the chromatic symmetric function in 1995, but
also stated two big questions, motivating its further study. The first asked for sufficient condi‐
tions for the CSF to the 𝑒‐positive, that is, have positive coefficients in the elementary symmet‐
ric function basis, called the ”Stanley‐Stembridge Conjecture”, and has recently been solved
[10].1 The other still remains open to this day, and is commonly dubbed Stanley’s isomorphism
conjecture, Staney’s tree conjecture, or Stanley’s tree isomorphism conjecture.

In particular, Stanley proposed that two trees are isomorphic if and only if they have the same
CSF. So far, this conjecture is widely believed to be true, and has been verified for trees up to
29 vertices [9]. Proving the conjecture would have applications to many far‐reaching areas of
mathematics and beyond. For example, it would allow us to efficiently implement algorithms
to check for tree isomorphisms by checking any of the characterizations of the coefficients
for the CSF of trees in any symmetric function basis, such as the number of independent sets
corresponding to each partition of 𝑛 (see Lemma 1.3.2).

In this chapter, we begin in Section 3.1, introducing the topic of Stanley’s isomorphism con‐
jecture by considering a simple, infinite family of trees which are constructed by adjoining
a leaf to a path graph. Then, in Section 3.2, we extend the results of [12] and [3] by showing
that spider trees can be reconstructed using the information in their CSF. This work culminates
in Section 3.3, where we give a new approach to the proof of Stanley’s conjecture based off
induction on the ”isomorphism distance” between two trees.

3.1 Warm Up: Path Graphs

To begin this section, we give a simple, combinatorial argument to show that graphs produced
by adjoining a leaf to a path graph can be distinguished from one another based on their CSF.

In particular, let 𝑃𝑛 be the path graphwith 𝑛 vertices, and let 𝑃𝑛,𝑘 denote 𝑃𝑛 with a leaf adjoined
to the 𝑘th vertex, where vertices are labeled sequentially such that the vertex labeled 1 is a leaf,
and 𝑘 ∈ {1, ..., ⌈𝑛/2⌉}. We wish to show that by studying 𝑋𝑃𝑛,𝑘 , we can recover 𝑘, and hence
reconstruct the graph. We begin by giving a few examples of these types of graphs, and their
corresponding CSFs in the power sum basis.

1It suffices for 𝐺 to be the incomparability graph of a ”claw free” poset, that is, a (3 + 1)‐free poset.
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1

2

(left) 𝑃3,1
𝑋−→ −𝑝(4) + 2𝑝(3,1) + 𝑝(2,2) − 3𝑝(2,1,1) + 𝑝(1,1,1,1)

(right) 𝑃3,2
𝑋−→ −𝑝(4) + 3𝑝(3,1) + 0𝑝(2,2) − 3𝑝(2,1,1) + 𝑝(1,1,1,1)

We know that, if Stanley’s conjecture is true, the information of the structural difference in
the two graphs must be contained in the algebraic difference of these symmetric functions,
namely, it is encoded in the object,

𝑋𝑃3,1 − 𝑋𝑃3,2 = −𝑝(3,1) + 𝑝(2,2)
We continue to look at more examples to try and make a conjecture about the way this infor‐
mation is encoded. For convenience, we define the notation 𝑜(𝜆) as set of partitions 𝜇 ⊢ 𝑛
for which 𝜇 <𝐿 𝜆 where <𝐿 is the lexicographic (total) ordering on partitions. Likewise, we let
𝑜(𝑝𝜆) = ∑𝜇∈𝑜(𝜆) 𝑎𝜇𝑝𝜇 for some undetermined coefficients 𝑎𝜇 which may be 0.

1

2

(left) 𝑃4,1
𝑋−→ 𝑝5 − 2𝑝(4,1) − 2𝑝(3,2) + 3𝑝(3,1,1) + 𝑜(𝑝(3,1,1))

(right) 𝑃4,2
𝑋−→ 𝑝5 − 3𝑝(4,1) − 𝑝(3,2) + 4𝑝(3,1,1) + 𝑜(𝑝(3,1,1))

1

2

3

(left) 𝑃5,1
𝑋−→ −𝑝(6) + 2𝑝(5,1) + 2𝑝(4,2) + 𝑝(3,3) + 𝑜(𝑝(3,3))

(center) 𝑃5,2
𝑋−→ −𝑝(6) + 3𝑝(5,1) + 𝑝(4,2) + 𝑝(3,3) + 𝑜(𝑝(3,3))

(right) 𝑃5,3
𝑋−→ −𝑝(6) + 3𝑝(5,1) + 2𝑝(4,2) + 0𝑝(3,3) + 𝑜(𝑝(3,3))
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For simplicity, we define for a fixed 𝑛, [𝑘 ∶ 𝑗]𝑛 = 𝑋𝑃𝑛,𝑘 − 𝑋𝑃𝑛,𝑗 . Then, we have,

𝑛 = 4 𝑛 = 5 𝑛 = 6
[1 ∶ 2]3 = −𝑝(3,1) + 𝑝(2,2) [1 ∶ 2]4 = 𝑝(4,1) − 𝑝(3,2) + 𝑜(𝑝(3,1,1)) [1 ∶ 2]5 = −𝑝(5,1) + 𝑝(4,2) + 𝑜(𝑝(3,2,1))

[1 ∶ 3]5 = −𝑝(5,1) + 𝑝(3,3) + 𝑜(𝑝(3,2,1))
[2 ∶ 3]5 = −𝑝(4,2) + 𝑝(3,3) + 𝑜(𝑝(3,2,1))

It is not difficult to see that for 𝑛 = 4, 5, 6, the two leading terms in lexicographic order of [𝑘 ∶ 𝑗]𝑛
where 𝑗 ≠ 𝑘 always are indexed by a partition of length 2, and the second component in those
partitions are 𝑘 and 𝑗, respectively. Establishing this fact for arbitrary 𝑛 would not only prove
that this family of graphs can be distinguished based on their CSF, but it interesting as one
would not expect the CSF to capture the difference in the graphs in such a simple and obvious
way. We prove this fact next. First we introduce the vertex distance 𝛾𝐺(⋅, ⋅) between two vertices
of a graph 𝐺, which is simply the number of vertices in the shortest path between them. We
define 𝛾𝐺(𝑢, 𝑣) = ∞ if there is no path between 𝑢 and 𝑣. Where 𝐺 is clear from context, we
omit it in the subscript. For example, if 𝑢1 and 𝑢2 are the two leaves in 𝑃𝑛 where 𝑛 ≥ 2, then
𝛾𝑃𝑛(𝑢1, 𝑢2) = 𝑛.

Lemma3.1.1. Fix𝑛 ∈ ℤ+ and a tuple (𝑘, 𝑗) ∈ {2, 3, ..., ⌊𝑛/2⌋}×{2, 3, ..., ⌈𝑛/2⌉}. The unsigned coefficient
of 𝑝(𝑛−𝑘+1,𝑘) in 𝑋𝑃𝑛,𝑗 , denoted by [𝑝(𝑛−𝑘+1,𝑘)]𝑃𝑛,𝑗 , is the amount of the four inequalities below that are
satisfied.

𝑗 ≤ 𝑘 − 1 (3.1)
𝑗 ≤ 𝑛 − 𝑘 (3.2)
𝑗 ≥ 𝑛 − 𝑘 + 2 (3.3)
𝑗 ≥ 𝑘 + 1 (3.4)

Proof. Wewish to applyLemma1.3.3byfinding thenumber subsets 𝑆 ⊂ 𝐸(𝑃𝑛,𝑗) such that𝜆(𝑆) =
(𝑛 − 𝑘 + 1, 𝑘). Let ℓ ∈ 𝑉(𝑃𝑛,𝑗) be the leaf that is adjoined to the path graph 𝑃𝑛 to construct 𝑃𝑛,𝑗
(see Figure 3.1). Since 𝑘 > 1, ℓ cannot be in a connected component of vertex size 1 in 𝑃𝑛,𝑗(𝑆).
Furthermore, if ℓ is in a connected component in 𝑃𝑛,𝑗 that does not contain any other leaves of
𝑃𝑛,𝑗, then 𝑃𝑛,𝑗(𝑆)must have at least 3 connected components, therefore 𝑙(𝜆(𝑆)) > 2. Therefore it
suffices to find the number of unique subsets 𝑆 ⊂ 𝐸(𝑃𝑛,𝑗) such that in 𝑃𝑛,𝑗(𝑆), ℓ is in a connected
component of either size 𝑘 or 𝑛 − 𝑘 + 1 and contains at least one other leaf of 𝑃𝑛,𝑗. Then, by
putting the vertices not in this connected component into another connected component, we
have that 𝜆(𝑆) = (𝑛 − 𝑘 + 1, 𝑘).

Let 𝑢1 be the closest leaf to ℓwith respect to 𝛾 (if 𝑗 = ⌈𝑛/2⌉ and 𝑛 is odd, we can pick either of the
leaves in 𝑃𝑛,𝑗 that are not ℓ to be 𝑢1). We notice that we can put ℓ in a connected component of
size 𝑘which contains the leaf 𝑢1 if and only if 𝛾(ℓ, 𝑢1) ≤ 𝑘. Likewise, we can put ℓ in a connected
component of size 𝑛 − 𝑘 + 1 which contains 𝑢1 if and only if 𝛾(ℓ, 𝑢1) ≤ 𝑛 − 𝑘 + 1. By the same
logic, we wish to study the inequalities 𝛾(ℓ, 𝑢2) ≤ 𝑘 and 𝛾(ℓ𝑢2) ≤ 𝑛 − 𝑘 + 1, where 𝑢2 is the other
leaf in 𝑃𝑛,𝑗. We notice that 𝛾(ℓ, 𝑢1) = 𝑗 + 1 and 𝛾(ℓ, 𝑢2) = 𝑛 − 𝑗 + 2, giving the inequalities in the
statement of this lemma.

Moreover, since 𝑘 ≤ ⌊𝑛/2⌋, 2𝑘 < 𝑛+ 1, therefore 𝑛 − 𝑘+ 1 ≠ 𝑘. Hence, putting ℓ into a connected
component of size (𝑘 OR 𝑛− 𝑘+ 1) containing leaf (𝑢1 OR 𝑢2) are indeed four distinct cases.
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ℓ
𝑢1𝑢2

123456

Figure 3.1: An example of a subset 𝑆 ⊂ 𝐸(𝑃11,3) such that 𝜆(𝑆) = (7, 5). In specific, we can find
such a subset since 𝛾(ℓ, 𝑢1) = 4 ≤ 𝑘 = 5.

Theorem 3.1.1. Fix 𝑛 ∈ ℤ+ and let 1 ≤ 𝑘, 𝑗 < ⌈𝑛/2⌉ and 𝑘 ≠ 𝑗. Then,

𝑋𝑃𝑛,𝑘 − 𝑋𝑃𝑛,𝑗 = (−1)
𝑛−1(𝑝(𝑛−𝑘+1,𝑘) − 𝑝(𝑛−𝑗+1,𝑗)) + 􏾜

𝜆⊢𝑛
𝑙(𝜆)>2

𝑎𝜆𝑝𝜆

Proof. We prove the result by looking at three disjoint cases for the values of 𝑘 in the tuples
(𝑘, 𝑗). In the first case, let 𝑘 = 1 and consider the tuple (1, 1), Then, [𝑝(𝑛,1)]𝑃𝑛,𝑘 is the number of
leaves in 𝑃𝑛,𝑘. Hence, [𝑝(𝑛,1)]𝑃𝑛,𝑘 = 2. Furthermore, consider the tuple (1, 𝑗), where 1 < 𝑗 ≤ ⌈𝑛/2⌉,
then 𝑃𝑛,𝑗 has 3 leaves, therefore [𝑝(𝑛,1)]𝑃𝑛,𝑗 = 3. Therefore, the proof is complete with respect to
the coefficient of 𝑝(𝑛,1), that is,

[𝑝(𝑛,1)]𝑃𝑛,𝑘 − [𝑝(𝑛,1)]𝑃𝑛,𝑗 =
⎧⎪⎨
⎪⎩
−1 if 𝑘 = 1 and 1 < 𝑗 ≤ ⌈𝑛/2⌉
0 otherwise

Suppose now that 1 < 𝑘 ≤ ⌊𝑛/2⌋. Then the tuple (𝑘, 𝑘) only satisfies inequality (3.2) from Lemma
3.1.1. It follows that [𝑝(𝑛−𝑘+1,𝑘)]𝑃𝑛,𝑘 = 1. Next, suppose that 𝑗 = 1, then 𝑃𝑛,𝑗 = 𝑃𝑛+1, and since
𝑘 ≤ ⌊𝑛/2⌋, there are two unique edges in 𝑃𝑛+1 such that their removal gives a subset 𝑆 ⊂ 𝐸(𝑃𝑛+1)
with 𝜆𝑃𝑛+1(𝑆) = (𝑛 − 𝑘 + 1, 𝑘), hence [𝑝(𝑛−𝑘+1,𝑘)]𝑃𝑛,𝑗 = 2. Thirdly, suppose 1 < 𝑗 < 𝑘. Then the pair
(𝑘, 𝑗) satisfies only inequalities (3.1) and (3.2) fromLemma3.1.1. It follows that [𝑝(𝑛−𝑘+1,𝑘)]𝑃𝑛,𝑗 = 2.
Finally, suppose that 𝑘 < 𝑗 ≤ ⌈𝑛/2⌉, then the pair (𝑘, 𝑗) satisfies only (3.2) and (3.4), therefore we
again have [𝑝(𝑛−𝑘+1,𝑘)]𝑃𝑛,𝑗 = 2. The proof is complete this case.

In the last case, we have 𝑘 > ⌊𝑛/2⌋, in which case 𝑛 is odd and 𝑘 = (𝑛 + 1)/2. In this case, there
is no way to put ℓ into a connected component with either of the other leaves in 𝑃𝑛,𝑘 such that
the connected component has size 𝑘. Therefore [𝑝(𝑛−𝑘+1,𝑘)]𝑃𝑛,𝑘 = 0. Moreover, if 𝑗 = 1, then
only removing the unique center edge (that is, the edge connecting the two unique centroids
of 𝑃𝑛,𝑗 = 𝑃𝑛+1) will give a subset 𝑆 ⊂ 𝐸(𝑃𝑛,𝑗) such that 𝜆(𝑆) = (𝑛 − 𝑘 + 1, 𝑘), so [𝑝(𝑛−𝑘+1,𝑘)]𝑃𝑛,𝑗 = 1.
Lastly, if 1 < 𝑗 ≤ ⌊𝑛/2⌋, then the tuple (𝑘, 𝑗) satisfies only inequalities (3.1) and (3.2). However,
since 𝑛 − 𝑘 + 1 = 𝑘 in this case, putting 𝛾 in a connected component with 𝑢1 of size 𝑘 or 𝑛 − 𝑘 + 1
is the same connected component, so there is only one unique subset 𝑆 ⊂ 𝐸(𝑃𝑛,𝑗) such that
𝜆(𝑆) = (𝑛 − 𝑘 + 1, 𝑘). Therefore [𝑝(𝑛−𝑘+1,𝑘)]𝑃𝑛,𝑗 = 1. Finally, we have verified the statement of the
theorem in this case. The term (−1)𝑛−1 follows from #𝑆 = 𝑛 − 1 and Lemma 1.3.3.

As wewill see later, studying the algebraic difference in the CSF of two graphs, as we have done
here, is a useful technique to understand the differences in the graph structure. In particular,
this is an idea that we have not seen in the literature as an approach to Stanley’s isomorphism
conjecture. More on that idea is given in Section 3.3. In fact, our result here is a specific
instance of the main result in Section 3.2, as the trees we considered here are in‐fact spiders.
However, our analysis is more careful in giving an explicit characterization of the algebraic
difference of the CSF of two trees in this section, which is not done in the next section.
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3.2 A Simple Proof that the CSF Distinguishes Spiders

Spiders are a certain infinite family of trees which have at most one vertex with degree greater
than 2, call it 𝑢. It’s not difficult to see that a spider, 𝑆 = (𝑉, 𝐸) is uniquely defined by the length
of it’s legs, that is, the sequence (𝛾(𝑙, 𝑢))𝑙∈𝐿(𝑆). In particular, we define a leg to be the path from
a leaf in 𝑆 to the vertex 𝑢. In this section, we give a simple, combinatorial proof that spiders
can be reconstructed from the chromatic symmetric function.

This result was first proven by Martin, Morin, and Wager [12] by showing that the chromatic
symmetric function is a stronger graph invariant than the subtree polynomial (see Subsection
2.2.2), and using the properties preserved by the subtree polynomial, namely the degree and
path sequence, to show that spiders are distinguished. Later, Crew [3] showed the same re‐
sult in a different way by using the additional information of the trunk size and twig lengths
(see Subsection 2.2.3). However, Crew’s still proof still relied on the subtree polynomial, and
therefore does not provide insight into how the CSF can distinguish spiders. By contrast, our
proof directly uses the properties of the CSF in the power sum basis to give the result, there‐
fore showing how to reconstruct a spider from 𝑋𝑆. Moreover, it is significantly simpler than
the proofs in [12] and [3].

Theorem 3.2.1. Let 𝑆 = (𝑉, 𝐸) be a spider, then 𝑆 can be reconstructed from 𝑋𝑆.

Proof. First, we note that for a subset 𝑆 ⊂ 𝐸,𝐺(𝑆) is a subtree of 𝑆 containing 𝑘 vertices adjoined
with 𝑛−𝑘 independent vertices if and only if 𝑆 is constructed by taking the entire edge set 𝐸 and
trimming a leaf edge, that is, an edge such that one of its endpoints is a leaf, iteratively 𝑛−𝑘 times.
By this, wemean removing a leaf edge, then removing a leaf edge in the remaining graph, and
so on, 𝑛−𝑘 times. Moreover, by Lemma 1.3.3 the number of such subsets 𝑆 is exactly [𝑝(𝑘,1𝑛−𝑘)]𝑆.
For example, [𝑝(𝑛−1,1)]𝑆 is the number of leaves of 𝑆, which is also the number ofways to remove
a leaf edge one time from 𝑆. In particular, define 𝐿1 ≔ [𝑝(𝑛−1,1)]𝑆 as the number of legs in 𝑆with
length at least 1.

Now, consider [𝑝(𝑛−2,12)]𝑆. Either we can remove a leaf edge from two different legs or, if a leg
has length at least 2, we can remove a leaf edge twice from the same leg. In this way, we have

[𝑝(𝑛−2,12)] = 􏿶
𝐿1
2 􏿹

+ 𝐿2

where 𝐿2 is the number of legs with length at least 2. In the same sense, we can write 𝐿𝑘 =
𝑓(𝐿𝑘−1, 𝐿𝑘−2, ..., 𝐿1) for some explicit expression 𝑓, which implores an approach by induction.

Namely, suppose we are given the numbers (𝐿1, 𝐿2, ..., 𝐿𝑘) and that 𝐿𝑗 correctly counts the num‐
ber of legs in 𝑆 with length at least 𝑗, for 1 ≤ 𝑗 ≤ 𝑘. In particular, we can assume that there is
at least one leg in 𝑆 with length greater than 𝑘, as else we can already reconstruct 𝑆 using the
given information.

Consider the coefficient [𝑝(𝑛−𝑘−1,1𝑘+1)]𝑆, which is the number of ways to iteratively trim 𝑘 + 1
leaf edges from 𝑆, irrespective of the order of trimming. We note that we trim leaves from at
least two different legs if and only if we do not trimmore than 𝑘 leaf edges from any single leg.
Moreover, given 𝐿𝑘, 𝐿𝑘−1, ..., 𝐿1, the number of legs with length exactly 𝑗 for 1 ≤ 𝑗 < 𝑘 is given by
𝛼𝑗 = 𝐿𝑗+1 − 𝐿𝑗, and we define 𝛼𝑘 = 𝐿𝑘. The number of ways to remove 𝑘 + 1 leaf edges from at
least two legs is the number of integer solutions to 𝑥1 + 𝑥2 + ... + 𝑥𝐿1 = 𝑘 + 1 such that the value
of 𝑥𝑖 does not exceed the length of the 𝑖th leg (where we assign an order to the legs arbitrarily).
That is, we trim 𝑥𝑖 leaf edges from the 𝑖th leg. We have,
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𝑓(𝛼𝑘, 𝛼𝑘−1, ..., 𝛼1, 𝐿1) =
1

(𝑘 + 1)!
𝑑𝑘+1
𝑑𝑥𝑘+1

∏𝑘
𝑖=1(1 − 𝑥𝛼𝑖+1)
(1 − 𝑥)𝐿1 |

𝑥=0

That is, we isolate the coefficient of 𝑥𝑘+1 in the generating function for this integer composition
problem.2 Since the cases where we remove 𝑘 + 1 leaf edges from a single leg and the cases
counted by 𝑓 are disjoint, we have,

𝐿𝑘+1 = [𝑝(𝑛−𝑘−1,1𝑘+1)]𝑆 − 𝑓(𝐿𝑘, 𝐿𝑘−1, ..., 𝐿1)

Lastly, we can find the sequence of leg‐lengths from (𝐿1, 𝐿2, ..., 𝐿𝜌), where 𝜌 is the length of the
longest leg in 𝑆, as the number of legs with length exactly 𝑗 is 𝐿𝑗 − 𝐿𝑗+1, for any 1 ≤ 𝑗 ≤ 𝜌 − 1,
which uniquely determines 𝑆 up to isomorphism.

Example 3.2.1. Suppose we are given the following CSF of a spider,

𝑋𝑆 = −𝑝(6) + 3𝑝(5,1) + 2𝑝(4,2) − 5𝑝(4,12) − 4𝑝(3,2,1) + 5𝑝(3,13) − 𝑝(23) + 5𝑝(22,12) − 5𝑝(2,14) + 𝑝(16)

From [𝑝(5,1)]𝑆 = 3, we know that 𝑆 has 3 leaves. From [𝑝(4,12)]𝑆 = 5, we know that there are
5 − 􏿴3

2
􏿷 = 2 legs of length at least 2, hence there is one leg of length 1. Moreover, there are 5

integer solutions to the equation 𝑥1 + 𝑥2 + 𝑥3 = 3 such that 0 ≤ 𝑥1 ≤ 1 and 0 ≤ 𝑥2, 𝑥3 ≤ 2, hence
there are [𝑝(3,13)]𝑆 − 5 = 0 legs of length 3 in 𝑆.

Figure 3.2: Spiders 𝑆 from Example 3.1 (left) and Example 3.2 (right).

Example 3.2.2. Suppose we are given the following CSF of a spider,

𝑋𝑆 = 4𝑝(7,1) + 8𝑝(6,12) + 11𝑝(5,13) + 10𝑝(4,14) + 9𝑝(3,15) + 7𝑝(2,16) + 􏾜
𝜆⊢𝑛

𝜆≠(𝑘,18−𝑘)

𝑎𝜆𝑝𝜆

From [𝑝(7,1)] = 4, we know that 𝑆 has 4 leaves. From [𝑝(6,12)] = 8, we know that there are
8 − 􏿴4

2
􏿷 = 2 legs of length at least 2, hence there are two legs of length 1. There are 10 integer

solutions to the equation 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 3 such that 0 ≤ 𝑥1, 𝑥2 ≤ 1 and 0 ≤ 𝑥3, 𝑥4 ≤ 2. Hence,
there are [𝑝(5,13)]𝑆 − 10 = 1 legs of length at least 3. Therefore there is one leg of length 3.

2There are many ways to do this counting, but we use an approach by generating functions since it lends itself
to efficient computation and, for our purposes, there is no need for a closed‐form solution.
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3.3 A Forest-Classification of the Difference of Two CSFs

As we have seen in Section 3.1, given the chromatic symmetric function of two trees, 𝑋𝑇1 and
𝑋𝑇2 it is useful to analyze the symmetric function 𝑋𝑇1 −𝑋𝑇2 in order to understand the relative
differences in the structure of the two trees. In this section, we give a characterization of the
function𝑋𝑇1−𝑋𝑇2 in‐terms of a sumof chromatic symmetric functions of forest graphs. In fact,
there is no intuitive reason to expect that the difference in the CSF of two trees corresponds to
the CSF of a graph at all. Furthermore, we end with a discussion about Stanley’s isomorphism
conjecture, and how the ideas used leading to our main result can be applied to prove the
conjecture.

Before we can prove our main result, we first need the following lemma of Orellana and Scott.

Lemma 3.3.1 ([13]). Let 𝐺1,2 be a graph with the adjacent edges 𝑒1 = (𝑣, 𝑣1), 𝑒2 = (𝑣, 𝑣2) and 𝑒3 =
(𝑣1, 𝑣2) ∉ 𝐸(𝐺1,2). Define,

𝐺1,3 = (𝑉(𝐺1,2), (𝐸(𝐺1,2) − {𝑒2}) ∪ {𝑒3})
𝐺2,3 = (𝑉(𝐺1,2), (𝐸(𝐺1,2) − {𝑒1}) ∪ {𝑒3})
𝐺1 = (𝑉(𝐺1,2), 𝐸(𝐺1,2) − {𝑒2})
𝐺3 = (𝑉(𝐺1,2), (𝐸(𝐺1,2) − {𝑒1, 𝑒2}) ∪ {𝑒3})

Then, 𝑋𝐺1,2 = 𝑋𝐺2,3 + 𝑋𝐺1 − 𝑋𝐺3 .

Proof. See Corollary 3.2 in [13], pg. 6.

This lemma states that by shifting an edge in a graph, that is, changing the graph 𝐺1,2 to the
graph 𝐺2,3, the CSF correspondingly shifts by a factor of 𝑋𝐺1 − 𝑋𝐺3 . Our main idea is to repeat‐
edly apply this ”shifting” operation to completely transform one tree into another. However,
some preliminary work needs to be done to justify that such a transformation is even possible.
The main technical barrier to overcome is handled in the following lemma.

Lemma 3.3.2. Let 𝑇1 = (𝑉1 = (𝑢1, 𝑢2, ..., 𝑢𝑛), 𝐸1) and 𝑇2 = (𝑉2 = (𝑣1, 𝑣2, ..., 𝑣𝑛), 𝐸2) be two labeled
trees such that the correspondence 𝑢𝑘 ↔ 𝑣𝑘 is not an isomorphism. Then, there are always numbers
1 ≤ 𝑖1 < 𝑗1 ≤ 𝑛 and 1 ≤ 𝑖2 < 𝑗2 ≤ 𝑛 such that,

1. (𝑢𝑖1 , 𝑢𝑗1) ∈ 𝐸1 but (𝑣𝑖1 , 𝑣𝑗1) ∉ 𝐸2, and (𝑢𝑖2 , 𝑢𝑗2) ∉ 𝐸1 but (𝑣𝑖2 , 𝑣𝑗2) ∈ 𝐸2
2. Either3 the unique path from 𝑢𝑖1 to 𝑢𝑖2 in 𝑇1 does not contain 𝑢𝑗1 , or the unique path from 𝑢𝑖1

to 𝑢𝑗2 in 𝑇1 does not contain 𝑢𝑗1 .

Proof. We first prove the existence numbers (𝑖1, 𝑖2, 𝑗1, 𝑗2) that satisfy (1.). Then, we show that if
this choice does not satisfy (2.), then this implies must be another choice that does satisfy (1.)
and (2.).

Since the correspondence 𝑢𝑘 ↔ 𝑣𝑘 is not an isomorphism, theremust exist 1 ≤ 𝑖1 < 𝑗1 ≤ 𝑛 such
that the edge (𝑢𝑖1 , 𝑢𝑗1) ∈ 𝐸1 but (𝑣𝑖1 , 𝑣𝑗1) ∉ 𝐸2. Moreover, this implies that there are numbers
1 ≤ 𝑖2 < 𝑗2 ≤ 𝑛 such that (𝑢𝑖2 , 𝑢𝑗2) ∉ 𝐸1 but (𝑣𝑖2 , 𝑣𝑗2) ∈ 𝐸2. This fact follows directly from the
property that #𝐸1 = #𝐸2 = 𝑛 − 1.

Now, suppose the choice of (𝑖1, 𝑖2, 𝑗1, 𝑗2) as above does not satisfy (2.). That is, with generality
up to switching 𝑖1 and 𝑗1, both the unique path from 𝑢𝑖1 to 𝑢𝑖2 in 𝑇1 and the unique path from 𝑢𝑗1

3Exclusive, i.e. 𝑋𝑂𝑅 or ⊕.
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to 𝑢𝑗2 in 𝑇1 contain the vertex 𝑢𝑗1 . Then, by adding the edge (𝑢𝑖2 , 𝑢𝑗2) to 𝐸1, we create the cycle
𝑢𝑗1 → 𝑢𝑖2 → 𝑢𝑗2 → 𝑢𝑗1 . Therefore, in order to preserve the acyclic property in 𝑇2, there must
be at least one pair of numbers 1 ≤ 𝑖′1 < 𝑗′1 ≤ 𝑛 such that the edge (𝑢𝑖′1 , 𝑢𝑗′2) ∈ 𝐸1 is either on the
unique path from 𝑢𝑗1 to 𝑢𝑖2 or the path from 𝑢𝑗1 to 𝑢𝑗2 in 𝑇1, and (𝑣𝑖′1 , 𝑣𝑖′2) ∉ 𝐸2. Finally, since the
edge (𝑢𝑖′1 , 𝑢𝑗′1) is on the unique path in 𝑇1 between 𝑢𝑖2 and 𝑢𝑗2 , the choice of numbers (𝑖′1, 𝑖2, 𝑗′1, 𝑗2)
must satisfy both properties (1.) and (2.).

Before continuing in the proof of our main result, we define the function Agr ∶ 𝒯𝑛 ×𝒯𝑛 → ℤ+

(Agr for ”agreement”)where𝒯 is the set of labeled trees on𝑛 vertices,4 such that for𝑇1 = (𝑉1 =
(𝑢1, 𝑢2, ..., 𝑢𝑛), 𝐸1) and 𝑇2 = (𝑉2 = (𝑣1, 𝑣2, ..., 𝑣𝑛), 𝐸2), Agr(𝑇1, 𝑇2) is the number of ordered tuples
(𝑖, 𝑗)with 𝑖 < 𝑗 such that (𝑢𝑖, 𝑢𝑗) ∈ 𝐸1 but (𝑣𝑖, 𝑣𝑗) ∉ 𝐸2. In particular, we have that if Agr(𝑇1, 𝑇2) = 0
then 𝑇1 is isomorphic to 𝑇2, however the converse may not be true.

The next lemma is the primary ingredient of our main result, and defines one ”step” in the
algorithm which transforms 𝑇1 into 𝑇2.

Lemma 3.3.3. Let 𝑇1 = (𝑉1 = (𝑢1, 𝑢2, ..., 𝑢𝑛), 𝐸1) and 𝑇2 = (𝑉2 = (𝑣1, 𝑣2, ..., 𝑣𝑛), 𝐸2) be two labeled
trees such that Agr(𝑇1, 𝑇2) = 𝑚 > 0. Then, there is an algorithm which produces a tree 𝑇 = (𝑉 =
(𝑤1, 𝑤2, ..., 𝑤𝑛), 𝐸) such that Agr(𝑇1, 𝑇) = 1 and Agr(𝑇, 𝑇2) = 𝑚 − 1. Moreover,

𝑋𝑇1 = 𝑋𝑇 +
ℓ1+ℓ2
􏾜
𝑖=1

𝑋𝐹1𝑖 − 𝑋𝐹2𝑖

where 𝐹1𝑖 , 𝐹2𝑖 are forests, and ℓ1, ℓ2 are path lengths which are explained below.

Proof. We have that Agr(𝑇1, 𝑇2) = 0 if and only if the correspondence 𝑢𝑘 ↔ 𝑣𝑘 is an isomor‐
phism between 𝑇1 and 𝑇2. Therefore, from Lemma 3.3.2, let (𝑖1, 𝑖2, 𝑗1, 𝑗2) be numbers which sat‐
isfy properties (1.) and (2.). We will construct an algorithm which replaces the edge (𝑢𝑖1 , 𝑢𝑗1) ∈
𝐸1 with the edge (𝑢𝑖2 , 𝑢𝑗2), keeping the other edges in 𝐸1 the same, and call this new graph 𝑇.

Without loss of generality, suppose the unique path from 𝑢𝑖1 to 𝑢𝑖2 does not contain 𝑢𝑗1 , and call
this path ℎ1 = (𝑢𝑖1 = 𝛼0, 𝛼1, ..., 𝛼ℓ1 = 𝑢𝑖2). Then, from (2.) in Lemma 3.3.2, we also have that the
unique path from 𝑢𝑖1 to 𝑢𝑗2 does contain 𝑢𝑗1 , therefore the unique path from 𝑢𝑗1 to 𝑢𝑗2 does not
contain 𝑢𝑖1 , and we call this path ℎ2 = (𝑢𝑗1 = 𝛽0, 𝛽1, ..., 𝛽ℓ2 = 𝑢𝑗2).

Thefirst step in the algorithm is to applyLemma3.3.1 to the edges 𝑒1 = (𝛼0, 𝑢𝑗1) and 𝑒2 = (𝛼0, 𝛼1).
The result is (1) a tree 𝑇1 = (𝑉1, 𝐸11) where 𝐸11 is the same as 𝐸1, except the edge (𝛼0, 𝑢𝑗1) is
replaced by the edge (𝛼1, 𝑢𝑗1), (2) a forest 𝐹(1,1) such that 𝐸(𝐹(1,1)) is the same as 𝐸1 with the edge
𝑒2 removed, and (3) a forest 𝐹(1,2) such that 𝐸(𝐹(1,2)) is the same as 𝐸1 without the edges 𝑒1 or 𝑒2,
but with the edge (𝛼1, 𝑢𝑗1) adjoined. Moreover,𝑋𝑇1 = 𝑋𝑇+𝑋𝐹(1,1) −𝑋𝐹(1,2) . We continue by letting
𝑟 = 1, 𝑒1 = (𝛼𝑟, 𝑢𝑗1) and 𝑒2 = (𝛼𝑟, 𝛼𝑟+1), then applying Lemma 3.3.1 on 𝑇𝑟, and incrementing 𝑟.
The algorithm terminates when 𝑟 = ℓ1 + 1. Finally, we have constructed graphs {𝑇𝑟}1≤𝑟≤ℓ1 and
forests {𝐹(𝑟,1)}1≤𝑟≤ℓ1 , {𝐹(𝑟,2)}1≤𝑟≤ℓ1 such that, 𝑇ℓ1 = (𝑉1, 𝐸𝑟1) where 𝐸𝑟1 is the same as 𝐸1, except the
edge (𝑢𝑖1 , 𝑢𝑗1) is replaced by the edge (𝑢𝑖2 , 𝑢𝑗1). Moreover, we have,

𝑋𝑇1 = 𝑋𝑇ℓ1 +
ℓ1
􏾜
𝑟=1

𝑋𝐹(𝑟,1) − 𝑋𝐹(𝑟,2)

4The popular ”Cayley’s Formula”, named for Arthur Cayley, states that #𝒯𝑛 = 𝑛𝑛−2.
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We then apply this entire algorithm again to 𝑇ℓ1 , but the role of 𝑢𝑗1 is replaced by the vertex
𝑢𝑖2 , and the role of ℎ1 is replaced by ℎ2. As a result, we get a tree 𝑇 = (𝑉, 𝐸) where 𝐸 is the
same as 𝐸1, except the edge (𝑢𝑖1 , 𝑢𝑗1) is replaced by the edge (𝑢𝑖2 , 𝑢𝑗2), hence, Agr(𝑇1, 𝑇) = 1 and
Agr(𝑇, 𝑇2) = 𝑚 − 1. Moreover,

𝑋𝑇1 = 􏿵𝑋𝑇 +
ℓ2
􏾜
𝑟=1

𝑋𝐺(𝑟,1) − 𝑋𝐺(𝑟,2)􏿸 +
ℓ1
􏾜
𝑖=1
𝑋𝐹(𝑟,1) − 𝑋𝐹(𝑟,2)

where 𝐺(𝑟,𝑗), 1 ≤ 𝑟 ≤ ℓ2, 𝑗 ∈ {1, 2}, is a forest on 𝑛 − 2 edges.

It is now simple to prove our main result.

Theorem 3.3.1. Let 𝑇1 = (𝑉1 = (𝑢1, 𝑢2, ..., 𝑢𝑛), 𝐸1) and 𝑇2 = (𝑉2 = (𝑣1, 𝑣2, ..., 𝑣𝑛), 𝐸2) be two labeled
trees. Then there is an algorithm which produces two sets of forestsℱ1, ℱ2, each with precisely 𝑛 − 2
edges, such that,

𝑋𝑇1 = 𝑋𝑇2 + 􏾜
𝐹1∈ℱ1
𝐹2∈ℱ2

𝑋𝐹1 − 𝑋𝐹2

Proof. If Agr(𝑇1, 𝑇2) = 0, then 𝑇1 and 𝑇2 are isomorphic, therefore 𝑋𝑇1 = 𝑋𝑇2 . Otherwise,
Agr(𝑇1, 𝑇2) = 𝑚 > 0, and we apply the algorithm from Lemma 3.3.3 iteratively 𝑚 times to get
the result.

This result is well‐motivated in the search for a proof of Stanley’s isomorphism conjecture.
Namely, one can consider an approach by induction on the number of vertices in a tree. We
can assume that Stanley’s conjecture is true for trees with fewer than 𝑛 vertices, and that we
are given that𝑋𝑇1 = 𝑋𝑇2 , where 𝑇1 and 𝑇2 are trees on 𝑛 vertices. Then, after labeling the trees
arbitrarily and running the algorithm from Lemma 3.3.3, we must have that,

􏾜
𝐹1∈ℱ1

𝑋𝐹1 = 􏾜
𝐹2∈ℱ2

𝑋𝐹2

Moreover, we have the following result of Wang, Yu, and Zhang [17].

Lemma 3.3.4 ([17]). Let 𝑚, 𝑟 ∈ ℤ+. Let 𝑇 be a forest with components 𝑇1, ..., 𝑇𝑚 and 𝐹 be a forest
with components 𝐹1, ..., 𝐹𝑟. Suppose 𝑋𝑇 = 𝑋𝐹. Then 𝑚 = 𝑟, and there exists a permutation 𝜏 of [𝑚]
such that 𝑋𝑇𝑖 = 𝑋𝐹𝜏(𝑖) for 𝑖 ∈ [𝑚].

Proof. See Lemma 2.2 in [17], pg. 4.

Therefore, if we can give a one‐to‐one correspondence between the CSFs of forests inℱ1 and
ℱ2, we can say that the forests themselves are isomorphic, based on our inductive assumption.
From there, it should be simple to tell that the two original trees are isomorphic. As evidence
for this, a classical result states that trees are reconstructible from only the deck of subgraphs
admitted by removing a leaf [8], and in our case we only wish to tell two given trees are the
same; the reconstruction is unnecessary. As a ”proof of concept”, we give the following simple
result where the correspondence mentioned above is forced, since #ℱ1 = #ℱ2 = 1.
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𝑢𝑖2

𝑢𝑖1 𝑢𝑗1

𝐶2

𝐶𝐹1𝐹(1,1)

𝑢𝑖2

𝑢𝑖1 𝑢𝑗1

𝐶1 𝐶𝐹2𝐹(1,2)

≃

𝑢𝑖2

𝑢𝑖1 𝑢𝑗1

𝐶1

𝐶2

𝐶3𝑇1

𝑢𝑖2

𝑢𝑖1 𝑢𝑗1

𝐶1

𝐶2

𝐶3𝑇2

≃

Figure 3.3: Representation of 𝐹(1,1) and 𝐹(1,2) from Lemma 3.3.5. In particular, it is not hard to
see that 𝐶𝐹1 ≃ 𝐶𝐹2 and 𝐶1 ≃ 𝐶2 implies that 𝑇1 ≃ 𝑇2.

Lemma 3.3.5. Suppose 𝑋𝑇1 = 𝑋𝑇2 where 𝑇1 = (𝑉1 = (𝑢1, 𝑢2, ..., 𝑢𝑛), 𝐸1) and
𝑇2 = (𝑉2 = (𝑣1, 𝑣2, ..., 𝑣𝑛), 𝐸2). Moreover, suppose that Arg(𝑇1, 𝑇2) = 1, ℓ1 = 1, ℓ2 = 0, where ℓ1
and ℓ2 are defined as in the proof of Lemma 3.3.3, and Stanley’s conjecture is true for trees with ≤ 𝑛
vertices. Then 𝑇1 is isomorphic to 𝑇2.

Proof. There is only one choice of (𝑖1, 𝑗1, 𝑖2, 𝑗2) that satisfies both (1.) and (2.) in Lemma 3.3.2.
Moreover, because ℓ2 = 0, we have that 𝑗1 = 𝑗2. Consider the graph 𝑇 = (𝑉, 𝐸) where 𝐸 = 𝐸1 −
{(𝑢𝑖1 , 𝑢𝑗1), (𝑢𝑖1 , 𝑢𝑖2)}. Then 𝑇 has exactly three connected components. Let 𝐶1 be the connected
component of 𝑇 containing 𝑢𝑖1 , 𝐶2 be the connected component of 𝑇 containing 𝑢𝑖2 , and 𝐶3 be
the connected component of 𝑇 containing 𝑢𝑗1 .

After running the algorithm in Lemma 3.3.3, we have that 𝑋𝐹(1,1) = 𝑋𝐹(1,2) , where 𝐹(1,1) has one
connected component 𝐶1 and 𝐶3 adjoined by the edge (𝑢𝑖1 , 𝑢𝑖2), call it 𝐶𝐹1 , and the other con‐
nected component 𝐶2. Likewise, 𝐹(1,2) has one connected component 𝐶2 and 𝐶3 adjoined by
the edge (𝑢𝑖1 , 𝑢𝑗1), call it 𝐶𝐹2 , and the other connected component 𝐶1.

By Lemma 3.3.4 and by matching based on the number of vertices (i.e. 𝐶2 cannot be isomor‐
phic to 𝐶𝐹2 since 𝐶𝐹2 strictly contains 𝐶2, and likewise 𝐶1 ≄ 𝐶𝐹1), we have that 𝑋𝐶𝐹1 = 𝑋𝐶𝐹2
and 𝑋𝐶1 = 𝑋𝐶2 . Moreover, since we are assuming Stanley’s conjecture is true for all trees with
fewer than 𝑛 vertices and 𝐶𝐹𝑖 , 𝐶𝑗 are trees with fewer than 𝑛 vertices for 𝑖, 𝑗 ∈ {1, 2}, 𝐶𝐹1 ≃ 𝐶𝐹2
and𝐶1 ≃ 𝐶2. Fromhere, it is not hard to see that𝑇1 ≃ 𝑇2 (see Figure 3.3 for a visualization).

We can consider Lemma 3.3.5 to be the base case of the following result, which is itself the
base case of an inductive proof of Stanley’s conjecture.

Lemma 3.3.6. Suppose 𝑋𝑇1 = 𝑋𝑇2 where 𝑇1 = (𝑉1 = (𝑢1, 𝑢2, ..., 𝑢𝑛), 𝐸1) and
𝑇2 = (𝑉2 = (𝑣1, 𝑣2, ..., 𝑣𝑛), 𝐸2). Moreover, suppose that Arg(𝑇1, 𝑇2) = 1 and Stanley’s conjecture is
true for trees with ≤ 𝑛 vertices. Then 𝑇1 is isomorphic to 𝑇2.
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Proof outline. We apply induction to the value of ℓ1. The base case is covered in Lemma 3.3.5.
Once we have established the statement of Lemma 3.3.5 for an arbitrary ℓ1 = 𝑚, a symmetric
argument establishes the result for an arbitrary ℓ2, since the algorithm invoked is the same
(see Lemma 3.3.3).

Now, Lemma 3.3.6 acts as the base case in a proof of Stanley’s conjecture based on induction
of the value of Agr(𝑇1, 𝑇2).

Theorem 3.3.2 (Stanley’s isomorphism conjecture). If 𝑋𝑇1 = 𝑋𝑇2 , then 𝑇1 is isomorphic to 𝑇2.

Proof outline. We apply induction to the number of vertices in 𝑇1 and 𝑇2. Namely, suppose
that for all trees with fewer than 𝑛 vertices, the statement holds true. For the base case, the
conjecture has already been verified computationally for trees up to 29 vertices [9].

We give an arbitrary labeling to the trees 𝑇1 and 𝑇2 such that 𝑇1 = (𝑉1 = (𝑢1, 𝑢2, ..., 𝑢𝑛), 𝐸1) and
𝑇2 = (𝑉2 = (𝑣1, 𝑣2, ..., 𝑣𝑛), 𝐸2). We apply induction to the value of Agr(𝑇1, 𝑇2). The base case
of Agr(𝑇1, 𝑇2) = 1 is handled in Lemma 3.3.6. Moreover, suppose that for Arg(𝑇1, 𝑇2) < 𝑚, if
𝑋𝑇1 = 𝑋𝑇2 , then 𝑇1 is isomorphic to 𝑇2. For the inductive step, we wish to show that the result
holds for Agr(𝑇1, 𝑇2) = 𝑚.

Then, for any arbitrary labeled graphs 𝑇1 and 𝑇2 on 𝑛 vertices, there is some natural number
𝑘 less than 𝑛 such that Agr(𝑇1, 𝑇2) = 𝑘, therefore the result holds in general that 𝑋𝑇1 = 𝑋𝑇2
implies 𝑇1 is isomorphic to 𝑇2. Stanley’s conjecture follows by induction on 𝑛.

We leave it as future work to ourselves, and more broadly to the many researchers working on
Stanley’s conjecture, to complete the two inductive steps left unfinished in the proof outlines
of Lemma 3.3.6 and Theorem 3.3.2.
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SIGNATUREWORK NARRATIVE

The study of chromatic symmetric functions lies very clearly in the field of algebraic combi‐
natorics, which uses methods from combinatorics to study topics in algebra such as group
theory, algebraic geometry, and algebraic topology. As such, it is not surprising that two of
the three thematic courses I have taken which provided a strong foundation for my comple‐
tion of this work are (1)DiscreteMath for Computer Science (COMPSCI203), which covers the
basic of combinatorics and graph theory, and touches on some topics in algebraic combina‐
torics such as generating functions, and (2) Abstract Algebra (MATH401), which introduces
the mathematical study of algebra, including group theory and applications to counting. In
COMPSCI203, we study how to write combinatorial proofs in this course, which appear many
times throughout this project, as well as fundamental combinatorial objects like binomial co‐
efficients, multinomial coefficients, Stirling numbers of the 1st and 2nd kind, Catalan numbers,
andmore. Alternatively, the set of symmetric functions homogeneous of degree 𝑛 form a com‐
mutative ring, which is an algebraic structure studied extensively inMATH401. Understanding
rings and their properties are fundamental to understanding operations on symmetric func‐
tions, such as the so‐called ”Hall inner‐product” of symmetric functions.

My third thematic course is (3) Probability and Statistics (MATH205), the elements discussed
in which appear, for example, in Chapter 1 in the proof of the so‐called ”hook length formula”.
In fact, this method of giving a probabilistic interpretation of some key numbers and using
normalization to prove they must add to 1 was used to prove the other, major open problem
in the study of the CSF, called the ”Stanley‐Stembridge Conjecture” [10]. Understanding these
proofs requires an understanding of the fundamentals of probability, at least at the level of
applications.

Givenmy interest in the topics coveredby these three courses, I have foundopportunities to en‐
gage in the course material after my enrollment in the courses terminated. Throughout these
experiences, I was able to further solidify my interest in these topics, leading to my pursuit
of the chromatic symmetric function as a topic of study, as well as discuss relevant ideas and
brainstorm alongside faculty and peers at DKU. In the case of COMPSCI203, in the semester
following my enrollment in this course, I was invited by Professor Xing Shi Cai to study along‐
side 3 other DKU peers a textbook entitled ”Concrete Mathematics” by Donald Knuth. This
textbook directly extended the course materials of COMPSCI203, and we met weekly to dis‐
cuss one chapter per meeting, with a different student presenting each week. In particular,
I recall presenting on the chapter regarding generating functions, which are a formal power
series, just like symmetric functions, and which deepenedmy interest in the field of algebraic
combinatorics. Beyond this reading group, I have had the privilege of serving as the teaching
assistant (TA) for this course under Professor Cai for two semesters (Spring 2024 and Spring
2025).

Regarding Abstract Algebra (MATH401), under the guidance of Professor Italo Simonelli, sev‐
eral students and I began a venture in Fall 2024 to read‐through the textbook ”Algebra” by Emil
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Artin, which is a more advanced extension of the course materials fromMATH401. In particu‐
lar, we adopted the samemeeting style as the group led by Professor Cai, and are still meeting
regularly, discussing one chapter in each meeting. In specific, one very interesting topic that
I have discovered through this reading group is the application of group actions to counting,
that is, using algebra to study combinatorics.

Moreover, as the TA for MATH2065 under Professor Pascal Grange in the current semester
(Spring 2025), I have found an opportunity to engage with the course materials by assisting
other students in comprehending the abstract ideas covered. In particular, I have found that
my own understanding of the course materials has significantly deepened as to explain some‐
thing in clear terms requires a strong understanding. Moreover, revisiting these materials af‐
ter taking the courseMeasure and Integration (MATH450) givesme a newperspective. Namely,
a function which assigns a probability to each event in an event space is a measure assigned to
that set. Therefore the results from general measure theory can be applied to probability the‐
ory. For example, I now understand the derivations of results such as Chebyshev’s inequality
and the Borel‐Cantelli lemma, which are stated, but not proven, in MATH206.

Finally, one of the most important ways that I have engaged with the DKU math community
is through the ”Discrete Math Seminar”, which has been held semi‐regularly for many years,
now. In Spring 2023, I was invited by Professor Simonelli to give a presentation at the seminar,
my chosen topic for‐which was ”Benford’s Law”. I found it very exciting to dive deeply into
this topic and design a comprehensive review of the results in the study of Benford’s Law that I
foundmost interesting. Furthermore, I was able to applymy knowledge in other courses, such
asmy final project for Numerical Analysis (MATH302). This experience inspiredme to deepen
my engagement with the seminar, not only helping to organize the seminar in the following
semesters, but also giving talks whenever the opportunity arose, covering themethod of finite
differences in Fall 2023, and a research project I completed at another institution about pri‐
vate algorithms to release graph properties in Fall 2024. I accredit the Discrete Math Seminar
and the dedicated faculty in DKU’s math department with my continued interest in pursuing
research in mathematics and theoretical computer science, and moreover my interest in this
project.

5formerly MATH205
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