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Abstract

Spiders are a certain infinite family of trees which have at most one vertex with degree
greater than 2. It was first shown by Martin, Morin, and Wager [4] that the chromatic symmetric
function (CSF) distinguishes spiders by showing that the CSF is a stronger graph invariant than
the subtree polynomial, and using the properties preserved by the subtree polynomial, namely
the degree and path sequence. Later, Crew [1] showed the same result in a different way by
using the additional information of the trunk size and twig lengths. However, Crew’s proof still
relied on the subtree polynomial, and therefore does not provide insight into how the CSF can
distinguish spiders. In this note, we give a proof which directly uses the properties of the CSF
in the power sum basis to give the result, therefore showing how to reconstruct a spider from
its CSF.

1 Introduction

The chromatic symmetric function (CSF) was introduced by Richard Stanley in his 1995 seminal
work, A Symmetric Function Generalization of the Chromatic Polynomial of a Graph [5]. Given a
graph G = (V,E), the CSF of G is denoted as XG and is defined as a sum over all proper colorings
ϕ : V → N of G, and is defined by,

XG =
∑
ϕ

xϕ =
∑
ϕ

∏
v∈V

xϕ(v)

Before we move-on, we state but do not prove one main result about the CSF, which gives a
combinatorial interpretation to its coefficients when expressed in the power sum basis. As a bit of
notation, if G = (V,E) is a graph and S ⊂ E, then we denote by G(S) = (V, S) the subgraph of
G with edge set S. Moreover, we denote by λG(S) the partition of n = |V | formed by sorting the
number of vertices in each connected component of G(S) in weakly decreasing order. Where G is
obvious, we omit from the subscript and simply write λ(S). We are now ready to state the result.

Lemma 1.1 ([5]).

XG =
∑
S⊂E

(−1)|S|pλ(S)

Stanley not only introduced the chromatic symmetric function in 1995, but also stated two big
questions, motivating its further study. The first asked for sufficient conditions for the CSF to the
e-positive, that is, have positive coefficients in the elementary symmetric function basis, called the
”Stanley-Stembridge Conjecture”, and has recently been solved [3]1. The other still remains open
to this day, and is commonly dubbed Stanley’s isomorphism conjecture, Staney’s tree conjecture, or
Stanley’s tree isomorphism conjecture.
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1It suffices for G to be the incomparability graph of a ”claw free” poset, that is, a (3 + 1)-free poset.
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In particular, Stanley proposed that two trees are isomorphic if and only if they have the same
CSF. So far, this conjecture is widely believed to be true, and has been verified for trees up to 29 ver-
tices [2]. Proving the conjecture would have applications to many far-reaching areas of mathematics
and beyond. For example, it would allow us to efficiently implement algorithms to check for tree
isomorphisms by checking any of the characterizations of the coefficients for the CSF of trees in any
symmetric function basis, such as the number of independent sets corresponding to each partition
of n.

Spiders are a certain infinite family of trees which have at most one vertex with degree greater
than 2. It was first shown by Martin, Morin, and Wager [4] that the chromatic symmetric function
(CSF) distinguishes spiders by showing that the CSF is a stronger graph invariant than the subtree
polynomial, and using the properties preserved by the subtree polynomial, namely the degree and
path sequence. Later, Crew [1] showed the same result in a different way by using the additional
information of the trunk size and twig lengths. However, Crew’s still proof still relied on the subtree
polynomial, and therefore does not provide insight into how the CSF can distinguish spiders. In the
next section, we give a proof which directly uses the properties of the CSF in the power sum basis
to give the result, therefore showing how to reconstruct a spider from its CSF.

2 Main Result

It’s not difficult to see that a spider, S = (V,E) is uniquely defined by the length of it’s legs, that
is, the sequence (γ(l, u))l∈L(S), where γ : V × V → N is the vertex distance between two vertices
(i.e. the number of vertices on the shortest path between them). In particular, we define a leg to be
the path from a leaf in S to the vertex u. In this section, we give a simple, combinatorial proof that
spiders can be reconstructed from the chromatic symmetric function.

Theorem 2.1. Let S = (V,E) be a spider, then S can be reconstructed from XS.

Proof. First, we note that for a subset S ⊂ E, G(S) is a subtree of S containing k vertices adjoined
with n− k independent vertices if and only if S is constructed by taking the entire edge set E and
trimming a leaf edge, that is, an edge such that one of its endpoints is a leaf, iteratively n− k times.
By this, we mean removing a leaf edge, then removing a leaf edge in the remaining graph, and so
on, n−k times. Moreover, by Lemma 1.1 the number of such subsets S is exactly [p(k,1n−k)]S . For
example, [p(n−1,1)]S is the number of leaves of S, which is also the number of ways to remove a leaf
edge one time from S. In particular, define L1 := [p(n−1,1)]S as the number of legs in S with length
at least 1.

Now, consider [p(n−2,12)]S . Either we can remove a leaf edge from two different legs or, if a leg
has length at least 2, we can remove a leaf edge twice from the same leg. In this way, we have

[p(n−2,12)] =

(
L1

2

)
+ L2

where L2 is the number of legs with length at least 2. In the same sense, we can write Lk =
f(Lk−1, Lk−2, ..., L1) for some explicit expression f , which implores an approach by induction.

Namely, suppose we are given the numbers (L1, L2, ..., Lk) and that Lj correctly counts the
number of legs in S with length at least j, for 1 ≤ j ≤ k. In particular, we can assume that there
is at least one leg in S with length greater than k, as else we can already reconstruct S using the
given information.

Consider the coefficient [p(n−k−1,1k+1)]S , which is the number of ways to iteratively trim k + 1
leaf edges from S, irrespective of the order of trimming. We note that we trim leave edges from
at least two different legs if and only if we do not trim more than k leaf edges from any single leg.
Moreover, given Lk, Lk−1, ..., L1, the number of legs with length exactly j for 1 ≤ j < k is given by
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αj = Lj+1 − Lj , and we define αk = Lk. The number of ways to remove k + 1 leaf edges from at
least two legs is the number of integer solutions to x1 + x2 + ...+ xL1 = k+1 such that the value of
xi does not exceed the length of the ith leg (where we assign an order to the legs arbitrarily). That
is, we trim xi leaf edges from the ith leg. We have,

f(αk, αk−1, ..., α1, L1) =
1

(k + 1)!

dk+1

dxk+1

∏k
i=1(1− xαi+1)

(1− x)L1

∣∣∣∣
x=0

That is, we isolate the coefficient of xk+1 in the generating function for this integer composition
problem.2 Since the cases where we remove k+ 1 leaf edges from a single leg and the cases counted
by f are disjoint, we have,

Lk+1 = [p(n−k−1,1k+1)]S − f(Lk, Lk−1, ..., L1)

Lastly, we can find the sequence of leg-lengths from (L1, L2, ..., Lρ), where ρ is the length of the
longest leg in S, as the number of legs with length exactly j is Lj − Lj+1, for any 1 ≤ j ≤ ρ − 1,
which uniquely determines S up to isomorphism.

Example 2.1. Suppose we are given the following CSF of a spider,

XS = −p(6) + 3p(5,1) + 2p(4,2) − 5p(4,12) − 4p(3,2,1) + 5p(3,13) − p(23) + 5p(22,12) − 5p(2,14) + p(16)

From [p(5,1)]S = 3, we know that S has 3 leaves. From [p(4,12)]S = 5, we know that there are

5−
(
3
2

)
= 2 legs of length at least 2, hence there is one leg of length 1. Moreover, there are 5 integer

solutions to the equation x1 + x2 + x3 = 3 such that 0 ≤ x1 ≤ 1 and 0 ≤ x2, x3 ≤ 2, hence there are
[p(3,13)]S − 5 = 0 legs of length 3 in S.

Figure 1: Spiders S from Example 3.1 (left) and Example 3.2 (right).

Example 2.2. Suppose we are given the following CSF of a spider,

XS = 4p(7,1) + 8p(6,12) + 11p(5,13) + 10p(4,14) + 9p(3,15) + 7p(2,16) +
∑
λ⊢n

λ̸=(k,18−k)

aλpλ

From [p(7,1)] = 4, we know that S has 4 leaves. From [p(6,12)] = 8, we know that there are

8 −
(
4
2

)
= 2 legs of length at least 2, hence there are two legs of length 1. There are 10 integer

solutions to the equation x1 + x2 + x3 + x4 = 3 such that 0 ≤ x1, x2 ≤ 1 and 0 ≤ x3, x4 ≤ 2. Hence,
there are [p(5,13)]S − 10 = 1 legs of length at least 3. Therefore there is one leg of length 3.

2There are many ways to do this counting, but we use an approach by generating functions since it lends itself to
efficient computation and, for our purposes, there is no need for a closed-form solution.
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