Differentially Private Counting Queries on Approximate Shortest Paths

The 17th Annual International Conference on Combinatorial Optimization and Applications (COCOA'24)

Jesse Campbell

Duke Kunshan University

December 7th, 2024

Contents

Acknowledgments

- 2 Introduction & Preliminaries
- 3 A Recursive Tree Algorithm
- A Generalization

Acknowledgments

Joint work with **Dr. Chunjiang Zhu**, Assistant Professor, University of North Carolina at Greensboro.



Work supported by NSF Grant CNS-2349369 and the Computing Research Association via the NSF.

Work completed during the UNCG GraLNA 2024 REU.

Given the following information,

æ

Given the following information,

Public -

- Weighted graph $G = (V, E, \omega)$
- **2** System of paths $S \subset 2^E$

Given the following information,

Public -

- Weighted graph $G = (V, E, \omega)$
- **2** System of paths $S \subset 2^E$

Private –

• Edge attribute $\phi: E \to \mathbb{R}^+$

Given the following information,

Public -

- Weighted graph $G = (V, E, \omega)$
- **2** System of paths $S \subset 2^E$

Private –

• Edge attribute $\phi: E \to \mathbb{R}^+$

We wish to output the *counting queries* over *S* with *differential privacy*.

Given the following information,

Public -

- Weighted graph $G = (V, E, \omega)$
- **2** System of paths $S \subset 2^E$

Private –

• Edge attribute $\phi: E \to \mathbb{R}^+$

We wish to output the *counting queries* over S with *differential privacy*.

Counting Query Definition

A counting query over a path $P \subset E$ is the number $\sum_{e \in P} \phi(e)$

Range counting on graphs - ranges are defined as paths

Range counting on graphs - ranges are defined as paths

Range counting on graphs - ranges are defined as paths

Application – patient transfer network

• Vertices represent medical facilities

Range counting on graphs - ranges are defined as paths

- Vertices represent medical facilities
- Edges represent paths between facilities

Range counting on graphs - ranges are defined as paths

- Vertices represent medical facilities
- Edges represent paths between facilities
- Edge weights represent travel times along paths

Range counting on graphs - ranges are defined as paths

- Vertices represent medical facilities
- Edges represent paths between facilities
- Edge weights represent travel times along paths
- *Private edge attributes* represent number of patients in-transfer along paths

Neighboring Graphs

Two isomorphic graphs $G_1, G_2 = (V, E, \omega)$ with edge attribute functions $\phi_1, \phi_2 : E \to \mathbb{R}^+$ are said to be neighboring if

$$\sum_{e\in E} |\phi_1(e) - \phi_2(e)| \leq 1$$

Neighboring Graphs

Two isomorphic graphs $G_1, G_2 = (V, E, \omega)$ with edge attribute functions $\phi_1, \phi_2 : E \to \mathbb{R}^+$ are said to be neighboring if

$$\sum_{e\in E} ert \phi_1(e) - \phi_2(e) ert \leq 1$$
 .

Sensitivity

The I_1 sensitivity of $\mathcal{A}: \mathcal{X} \to \mathbb{R}^D$ is defined as

$$\Delta_1(\mathcal{A}) \coloneqq \max_{X,X'} \left\| \mathcal{A}(X) - \mathcal{A}(X')
ight\|_1$$

where X, X' are neighboring datasets.

Differential Privacy (DP) Definition

An algorithm $\mathcal{A} : \mathcal{X} \to \mathbb{R}^D$ is said to be (ε, δ) -differentially private if, for all outcomes $S \subseteq \mathbb{R}^D$ and neighboring datasets X, X',

$$\mathbb{P}[\mathcal{A}(X) \in S] \leq e^{\varepsilon} \cdot \mathbb{P}[\mathcal{A}(X') \in S] + \delta$$

Differential Privacy (DP) Definition

An algorithm $\mathcal{A} : \mathcal{X} \to \mathbb{R}^D$ is said to be (ε, δ) -differentially private if, for all outcomes $S \subseteq \mathbb{R}^D$ and neighboring datasets X, X',

$$\mathbb{P}[\mathcal{A}(X) \in S] \leq e^{\varepsilon} \cdot \mathbb{P}[\mathcal{A}(X') \in S] + \delta$$

We call the case where $\delta = 0$ *pure* differential privacy and the case where $\delta > 0$ *approximate* differential privacy.

Citation	Path System	ε-DP	(ε, δ) -DP
Deng et al. (2023)	Shortest	$\widetilde{O}(n^{1/3})$	$\widetilde{O}(n^{1/4})$
Bodwin et al. (2024)	Shortest	-	$\widetilde{\Omega}(n^{1/4})$
Our results (2024)	$(k \log \log (n))$ -approximate	$\widetilde{O}(kn^{1/k})$	$\widetilde{O}(\sqrt{k}n^{1/(2k)})$

▶ < ∃ >

3

Citation	Path System	ε -DP	(ε, δ) -DP
Deng et al. (2023)	Shortest	$\widetilde{O}(n^{1/3})$	$\widetilde{O}(n^{1/4})$
Bodwin et al. (2024)	Shortest	-	$\widetilde{\Omega}(n^{1/4})$
Our results (2024)	$(k \log \log (n))$ -approximate	$\widetilde{O}(kn^{1/k})$	$\widetilde{O}(\sqrt{k}n^{1/(2k)})$

In general, let **T** be a *t*-collective tree spanner of *G* such that $|\mathbf{T}| = \eta_t$. There is a ε -DP algorithm for releasing the counting queries that is $\widetilde{O}(\eta_t)$ -accurate and a (ε, δ) -DP algorithm that is $\widetilde{O}(\sqrt{\eta_t})$ -accurate with probability $1 - \gamma$.

Basic Composition

Let $\varepsilon, \delta \in [0, 1]$ and $k \in \mathbb{N}$. If we run k mechanisms where each mechanism is $(\varepsilon/k, \delta/k)$ -DP, then the entire algorithm is (ε, δ) -DP.

Basic Composition

Let $\varepsilon, \delta \in [0, 1]$ and $k \in \mathbb{N}$. If we run k mechanisms where each mechanism is $(\varepsilon/k, \delta/k)$ -DP, then the entire algorithm is (ε, δ) -DP.

Laplace Mechanism

Given any function $f : \mathcal{X} \to \mathbb{R}^k$, the **Laplace mechanism** on input $X \in \mathcal{X}$ independently samples $Y_1, ..., Y_k$ according to $Lap(\Delta_1(f)/\varepsilon)$ and outputs,

$$\mathcal{M}_{f,\varepsilon}(X) = f(X) + (Y_1, ..., Y_k)$$

The Laplace mechanism is ε -differentially private.

Collective Tree Spanner Definition

A collection of spanning trees **T** of *G* is said to be an α -collective tree spanner of *G* if for every $u, v \in V$, there is a tree $\mathcal{T} \in \mathbf{T}$ such that $d_{\mathcal{T}}(u, v) \leq \alpha \cdot d_{G}(u, v)$.

Collective Tree Spanner Definition

A collection of spanning trees **T** of *G* is said to be an α -collective tree spanner of *G* if for every $u, v \in V$, there is a tree $\mathcal{T} \in \mathbf{T}$ such that $d_{\mathcal{T}}(u, v) \leq \alpha \cdot d_{\mathcal{G}}(u, v)$.

Abraham et al. (2020). There is a polynomial time deterministic algorithm that finds a $(k \log \log (n))$ -collective tree spanner with size $k \cdot n^{1/k}$.

Lemma 5. Let $\mathcal{T} = (V, E, \omega)$ be a tree rooted at $z \in V$ with $\varepsilon \in (0, 1]$ and $\gamma \in (0, 0.5]$. Then there is an ε -DP algorithm for releasing counting queries from the root to all other vertices on \mathcal{T} that is $O(\log^{1.5}(n) \cdot \log(n/\gamma)/\varepsilon)$ -accurate with probability $1 - \gamma$.

Input: Tree $\mathcal{T} = (V, E, \mathbf{w})$ rooted at $z \in V$ with edge attribute ϕ ; parameter $\varepsilon \in (0, 1)$

Output: ε -DP approximate counting queries in \mathcal{T} , $\{\widetilde{\omega}(u, v)\}_{u,v \in V}$

- 1: Let z^* be the vertex in T such that the subtree rooted at z^* has more than n/2 vertices, but the subtree rooted at each of z^* 's children has at most n/2 vertices
- 2: Let $z_1, z_2, ..., z_{\alpha}$ be the children of z^*
- 3: Let \mathcal{T}_i be the subtree rooted at z_i for $i \in [\alpha]$, and $\mathcal{T}_0 = \mathcal{T} {\mathcal{T}_1, ..., \mathcal{T}_{\alpha}}$
- 4: Sample $X \sim \text{Lap}(\log{(n)}/\varepsilon)$ and let $\omega(z^*, \mathcal{T}) = \omega(z, z^*) + X$
- 5: Let $\omega(z, \mathcal{T}) = 0$
- 6: Sample $(X_1, X_2, ..., X_{\alpha}) \sim Lap(\log(n)/\varepsilon)$ and let $\omega(z_i, \mathcal{T}) = \omega(z^*, \mathcal{T}) + \phi(z^*, z_i) + X_i$
- 7: Recursively compute counting queries in each subtree $T_0, T_1, ..., T_{\alpha}$
- 8: For each vertex $w \in V$, if $w \in \mathcal{T}_i$, let $\widetilde{\omega}(z, w) = \omega(z_i, \mathcal{T}_z) + \omega(w, \mathcal{T}_i)$

Input: Tree $\mathcal{T} = (V, E, \mathbf{w})$ rooted at $z \in V$ with edge attribute ϕ ; parameter $\varepsilon \in (0, 1)$

Output: ε -DP approximate counting queries in \mathcal{T} , $\{\widetilde{\omega}(u, v)\}_{u,v \in V}$

- 1: Let z^* be the vertex in T such that the subtree rooted at z^* has more than n/2 vertices, but the subtree rooted at each of z^* 's children has at most n/2 vertices
- 2: Let $z_1, z_2, ..., z_{\alpha}$ be the children of z^*
- 3: Let \mathcal{T}_i be the subtree rooted at z_i for $i \in [\alpha]$, and $\mathcal{T}_0 = \mathcal{T} {\mathcal{T}_1, ..., \mathcal{T}_{\alpha}}$
- 4: Sample $X \sim \text{Lap}(\log{(n)}/\varepsilon)$ and let $\omega(z^*, \mathcal{T}) = \omega(z, z^*) + X$
- 5: Let $\omega(z, \mathcal{T}) = 0$
- 6: Sample $(X_1, X_2, ..., X_{\alpha}) \sim Lap(\log(n)/\varepsilon)$ and let $\omega(z_i, \mathcal{T}) = \omega(z^*, \mathcal{T}) + \phi(z^*, z_i) + X_i$
- 7: Recursively compute counting queries in each subtree $T_0, T_1, ..., T_{\alpha}$
- 8: For each vertex $w \in V$, if $w \in \mathcal{T}_i$, let $\widetilde{\omega}(z, w) = \omega(z_i, \mathcal{T}_z) + \omega(w, \mathcal{T}_i)$

Input: Tree $\mathcal{T} = (V, E, \mathbf{w})$ rooted at $z \in V$ with edge attribute ϕ ; parameter $\varepsilon \in (0, 1)$

Output: ε -DP approximate counting queries in \mathcal{T} , $\{\widetilde{\omega}(u, v)\}_{u,v \in V}$

- 1: Let z^* be the vertex in \mathcal{T} such that the subtree rooted at z^* has more than n/2 vertices, but the subtree rooted at each of z^* 's children has at most n/2 vertices.
- 2: Let $z_1, z_2, ..., z_{\alpha}$ be the children of z^*
- 3: Let \mathcal{T}_i be the subtree rooted at z_i for $i \in [\alpha]$, and $\mathcal{T}_0 = \mathcal{T} {\mathcal{T}_1, ..., \mathcal{T}_{\alpha}}$
- 4: Sample $X \sim \text{Lap}(\log{(n)}/\varepsilon)$ and let $\omega(z^*, \mathcal{T}) = \omega(z, z^*) + X$
- 5: Let $\omega(z, \mathcal{T}) = 0$
- 6: Sample $(X_1, X_2, ..., X_{\alpha}) \sim Lap(\log(n)/\varepsilon)$ and let $\omega(z_i, \mathcal{T}) = \omega(z^*, \mathcal{T}) + \phi(z^*, z_i) + X_i$
- 7: Recursively compute counting queries in each subtree $T_0, T_1, ..., T_{\alpha}$
- 8: For each vertex $w \in V$, if $w \in \mathcal{T}_i$, let $\widetilde{\omega}(z, w) = \omega(z_i, \mathcal{T}_z) + \omega(w, \mathcal{T}_i)$

Input: Tree $\mathcal{T} = (V, E, \mathbf{w})$ rooted at $z \in V$ with edge attribute ϕ ; parameter $\varepsilon \in (0, 1)$

Output: ε -DP approximate counting queries in \mathcal{T} , $\{\widetilde{\omega}(u, v)\}_{u,v \in V}$

- 1: Let z^* be the vertex in T such that the subtree rooted at z^* has more than n/2 vertices, but the subtree rooted at each of z^* 's children has at most n/2 vertices
- 2: Let $z_1, z_2, ..., z_{\alpha}$ be the children of z^*
- 3: Let \mathcal{T}_i be the subtree rooted at z_i for $i \in [\alpha]$, and $\mathcal{T}_0 = \mathcal{T} {\mathcal{T}_1, ..., \mathcal{T}_{\alpha}}$
- 4: Sample $X \sim \text{Lap}(\log{(n)}/\varepsilon)$ and let $\omega(z^*, \mathcal{T}) = \omega(z, z^*) + X$
- 5: Let $\omega(z, \mathcal{T}) = 0$
- 6: Sample $(X_1, X_2, ..., X_{\alpha}) \sim Lap(\log(n)/\varepsilon)$ and let $\omega(z_i, \mathcal{T}) = \omega(z^*, \mathcal{T}) + \phi(z^*, z_i) + X_i$
- 7: Recursively compute counting queries in each subtree $T_0, T_1, ..., T_{\alpha}$
- 8: For each vertex $w \in V$, if $w \in \mathcal{T}_i$, let $\widetilde{\omega}(z, w) = \omega(z_i, \mathcal{T}_z) + \omega(w, \mathcal{T}_i)$

Input: Tree $\mathcal{T} = (V, E, \mathbf{w})$ rooted at $z \in V$ with edge attribute ϕ ; parameter $\varepsilon \in (0, 1)$

Output: ε -DP approximate counting queries in \mathcal{T} , $\{\widetilde{\omega}(u, v)\}_{u,v \in V}$

- 1: Let z^* be the vertex in T such that the subtree rooted at z^* has more than n/2 vertices, but the subtree rooted at each of z^* 's children has at most n/2 vertices
- 2: Let $z_1, z_2, ..., z_{\alpha}$ be the children of z^*
- 3: Let \mathcal{T}_i be the subtree rooted at z_i for $i \in [\alpha]$, and $\mathcal{T}_0 = \mathcal{T} \{\mathcal{T}_1, ..., \mathcal{T}_{\alpha}\}$
- 4: Sample $X \sim \text{Lap}(\log{(n)}/\varepsilon)$ and let $\omega(z^*, \mathcal{T}) = \omega(z, z^*) + X$
- 5: Let $\omega(z, \mathcal{T}) = 0$
- 6: Sample $(X_1, X_2, ..., X_{\alpha}) \sim Lap(\log(n)/\varepsilon)$ and let $\omega(z_i, \mathcal{T}) = \omega(z^*, \mathcal{T}) + \phi(z^*, z_i) + X_i$
- 7: Recursively compute counting queries in each subtree $\mathcal{T}_0, \mathcal{T}_1, ..., \mathcal{T}_{\alpha}$
- 8: For each vertex $w \in V$, if $w \in \mathcal{T}_i$, let $\widetilde{\omega}(z, w) = \omega(z_i, \mathcal{T}_z) + \omega(w, \mathcal{T}_i)$

Input: Tree $\mathcal{T} = (V, E, \mathbf{w})$ rooted at $z \in V$ with edge attribute ϕ ; parameter $\varepsilon \in (0, 1)$

Output: ε -DP approximate counting queries in \mathcal{T} , $\{\widetilde{\omega}(u, v)\}_{u,v \in V}$

- 1: Let z^* be the vertex in T such that the subtree rooted at z^* has more than n/2 vertices, but the subtree rooted at each of z^* 's children has at most n/2 vertices
- 2: Let $z_1, z_2, ..., z_{\alpha}$ be the children of z^*
- 3: Let \mathcal{T}_i be the subtree rooted at z_i for $i \in [\alpha]$, and $\mathcal{T}_0 = \mathcal{T} {\mathcal{T}_1, ..., \mathcal{T}_{\alpha}}$
- 4: Sample $X \sim \text{Lap}(\log(n)/\varepsilon)$ and let $\omega(z^*, \mathcal{T}) = \omega(z, z^*) + X$
- 5: Let $\omega(z, \mathcal{T}) = 0$
- 6: Sample $(X_1, X_2, ..., X_{\alpha}) \sim Lap(\log(n)/\varepsilon)$ and let $\omega(z_i, \mathcal{T}) = \omega(z^*, \mathcal{T}) + \phi(z^*, z_i) + X_i$
- 7: Recursively compute counting queries in each subtree $T_0, T_1, ..., T_{\alpha}$
- 8: For each vertex $w \in V$, if $w \in \mathcal{T}_i$, let $\widetilde{\omega}(z, w) = \omega(z_i, \mathcal{T}_z) + \omega(w, \mathcal{T}_i)$

Input: Tree $\mathcal{T} = (V, E, \mathbf{w})$ rooted at $z \in V$ with edge attribute ϕ ; parameter $\varepsilon \in (0, 1)$

Output: ε -DP approximate counting queries in \mathcal{T} , $\{\widetilde{\omega}(u, v)\}_{u,v \in V}$

- 1: Let z^* be the vertex in T such that the subtree rooted at z^* has more than n/2 vertices, but the subtree rooted at each of z^* 's children has at most n/2 vertices
- 2: Let $z_1, z_2, ..., z_{\alpha}$ be the children of z^*
- 3: Let \mathcal{T}_i be the subtree rooted at z_i for $i \in [\alpha]$, and $\mathcal{T}_0 = \mathcal{T} {\mathcal{T}_1, ..., \mathcal{T}_{\alpha}}$
- 4: Sample $X \sim \text{Lap}(\log(n)/\varepsilon)$ and let $\omega(z^*, \mathcal{T}) = \omega(z, z^*) + X$
- 5: Let $\omega(z, \mathcal{T}) = 0$
- 6: Sample $(X_1, X_2, ..., X_{\alpha}) \sim Lap(\log(n)/\varepsilon)$ and let $\omega(z_i, \mathcal{T}) = \omega(z^*, \mathcal{T}) + \phi(z^*, z_i) + X_i$
- 7: Recursively compute counting queries in each subtree $T_0, T_1, ..., T_{\alpha}$
- 8: For each vertex $w \in V$, if $w \in \mathcal{T}_i$, let $\widetilde{\omega}(z, w) = \omega(z_i, \mathcal{T}_z) + \omega(w, \mathcal{T}_i)$

Input: Tree $\mathcal{T} = (V, E, \mathbf{w})$ rooted at $z \in V$ with edge attribute ϕ ; parameter $\varepsilon \in (0, 1)$

Output: ε -DP approximate counting queries in \mathcal{T} , $\{\widetilde{\omega}(u, v)\}_{u,v \in V}$

- 1: Let z^* be the vertex in T such that the subtree rooted at z^* has more than n/2 vertices, but the subtree rooted at each of z^* 's children has at most n/2 vertices
- 2: Let $z_1, z_2, ..., z_{\alpha}$ be the children of z^*
- 3: Let \mathcal{T}_i be the subtree rooted at z_i for $i \in [\alpha]$, and $\mathcal{T}_0 = \mathcal{T} {\mathcal{T}_1, ..., \mathcal{T}_{\alpha}}$
- 4: Sample $X \sim \text{Lap}(\log{(n)}/\varepsilon)$ and let $\omega(z^*, \mathcal{T}) = \omega(z, z^*) + X$
- 5: Let $\omega(z, \mathcal{T}) = 0$
- 6: Sample $(X_1, X_2, ..., X_{\alpha}) \sim \text{Lap}(\log(n)/\varepsilon)$ and let $\omega(z_i, \mathcal{T}) = \omega(z^*, \mathcal{T}) + \phi(z^*, z_i) + X_i$
- 7: Recursively compute counting queries in each subtree $T_0, T_1, ..., T_{\alpha}$
- 8: For each vertex $w \in V$, if $w \in \mathcal{T}_i$, let $\widetilde{\omega}(z, w) = \omega(z_i, \mathcal{T}_z) + \omega(w, \mathcal{T}_i)$

< □ > < □ > < □ > < □ > < □ > < □ >

Input: Tree $\mathcal{T} = (V, E, \mathbf{w})$ rooted at $z \in V$ with edge attribute ϕ ; parameter $\varepsilon \in (0, 1)$

Output: ε -DP approximate counting queries in \mathcal{T} , $\{\widetilde{\omega}(u, v)\}_{u,v \in V}$

- 1: Let z^* be the vertex in T such that the subtree rooted at z^* has more than n/2 vertices, but the subtree rooted at each of z^* 's children has at most n/2 vertices
- 2: Let $z_1, z_2, ..., z_{\alpha}$ be the children of z^*
- 3: Let \mathcal{T}_i be the subtree rooted at z_i for $i \in [\alpha]$, and $\mathcal{T}_0 = \mathcal{T} \{\mathcal{T}_1, ..., \mathcal{T}_{\alpha}\}$
- 4: Sample $X \sim \text{Lap}(\log{(n)}/\varepsilon)$ and let $\omega(z^*, \mathcal{T}) = \omega(z, z^*) + X$
- 5: Let $\omega(z, \mathcal{T}) = 0$
- 6: Sample $(X_1, X_2, ..., X_{\alpha}) \sim Lap(\log(n)/\varepsilon)$ and let $\omega(z_i, \mathcal{T}) = \omega(z^*, \mathcal{T}) + \phi(z^*, z_i) + X_i$
- 7: Recursively compute counting queries in each subtree $T_0, T_1, ..., T_{\alpha}$
- 8: For each vertex $w \in V$, if $w \in \mathcal{T}_i$, let $\widetilde{\omega}(z, w) = \omega(z_i, \mathcal{T}_z) + \omega(w, \mathcal{T}_i)$

Algorithm 1 DPCQ on Rooted Trees

Input: Tree $\mathcal{T} = (V, E, \mathbf{w})$ rooted at $z \in V$ with edge attribute ϕ ; parameter $\varepsilon \in (0, 1)$

Output: ε -DP approximate counting queries in \mathcal{T} , $\{\widetilde{\omega}(u, v)\}_{u,v \in V}$

- 1: Let z^* be the vertex in T such that the subtree rooted at z^* has more than n/2 vertices, but the subtree rooted at each of z^* 's children has at most n/2 vertices
- 2: Let $z_1, z_2, ..., z_{\alpha}$ be the children of z^*
- 3: Let \mathcal{T}_i be the subtree rooted at z_i for $i \in [\alpha]$, and $\mathcal{T}_0 = \mathcal{T} \{\mathcal{T}_1, ..., \mathcal{T}_{\alpha}\}$
- 4: Sample $X \sim \text{Lap}(\log{(n)}/\varepsilon)$ and let $\omega(z^*, \mathcal{T}) = \omega(z, z^*) + X$
- 5: Let $\omega(z, \mathcal{T}) = 0$
- 6: Sample $(X_1, X_2, ..., X_{\alpha}) \sim Lap(\log(n)/\varepsilon)$ and let $\omega(z_i, \mathcal{T}) = \omega(z^*, \mathcal{T}) + \phi(z^*, z_i) + X_i$
- 7: Recursively compute counting queries in each subtree $\mathcal{T}_0, \mathcal{T}_1, ..., \mathcal{T}_{\alpha}$
- 8: For each vertex $w \in V$, if $w \in \mathcal{T}_i$, let $\widetilde{\omega}(z, w) = \omega(z_i, \mathcal{T}_z) + \omega(w, \mathcal{T}_i)$

< 日 > < 同 > < 回 > < 回 > < 回 > <

Remark 1. Every released counting query is the sum of at most log *n* estimates.

э

Remark 1. Every released counting query is the sum of at most $\log n$ estimates.

Proof. Every subtree has at most n/2 vertices, therefore the recursion depth is bounded above by log n.

Remark 1. Every released counting query is the sum of at most $\log n$ estimates.

Proof. Every subtree has at most n/2 vertices, therefore the recursion depth is bounded above by log n.

Accuracy analysis. We apply the following lemma,

Laplace R.V. Concentration Bound

Let $X_1, ..., X_t$ be independent random variables distributed according to Lap(b), and let $X = X_1 + ... + X_t$. Then for all $\gamma \in (0, 1)$, with probability at least $1 - \gamma$ we have,

 $|X| < O(b\sqrt{t}\log{(1/\gamma)})$

$$|\widetilde{\omega}(u,v) - \omega_{\mathcal{T}}(u,v)| \leq O(\log^{1.5}{(n)} \cdot \log{(1/\gamma)}/arepsilon)$$

with probability at least $1 - \gamma$.

$$|\widetilde{\omega}(u,v) - \omega_{\mathcal{T}}(u,v)| \leq O(\log^{1.5}{(n)} \cdot \log{(1/\gamma)}/arepsilon)$$

with probability at least $1 - \gamma$.

Privacy analysis. The estimates computed in each recursion are $(\varepsilon/\log(n))$ -DP by the **Laplace Mechanism**.

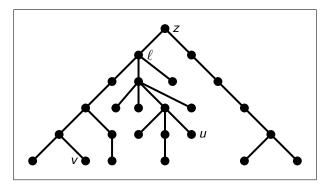
$$|\widetilde{\omega}(u,v) - \omega_{\mathcal{T}}(u,v)| \leq O(\log^{1.5}{(n)} \cdot \log{(1/\gamma)}/arepsilon)$$

with probability at least $1 - \gamma$.

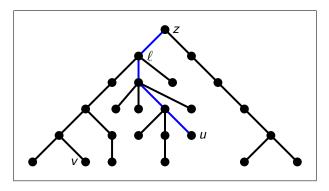
Privacy analysis. The estimates computed in each recursion are $(\varepsilon/\log(n))$ -DP by the **Laplace Mechanism**. By **Basic Composition**, the entire algorithm is ε -DP.

Algorithm 1 suffices to compute DPCQ for any tree.

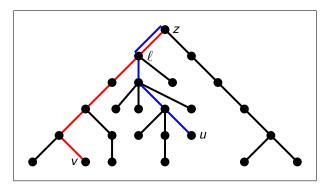
э



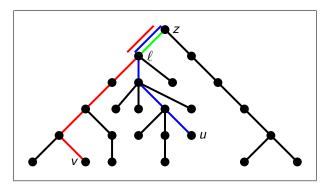
$$\widetilde{\omega}(u, v) =$$



$$\widetilde{\omega}(u,v) = \widetilde{\omega}(z,u)$$



$$\widetilde{\omega}(u,v) = \widetilde{\omega}(z,u) + \widetilde{\omega}(z,v)$$



$$\widetilde{\omega}(u,v) = \widetilde{\omega}(z,u) + \widetilde{\omega}(z,v) - 2 \cdot \widetilde{\omega}(z,\ell)$$

Theorem 1. Let **T** be a *t*-collective tree spanner of *G* such that $|\mathbf{T}| = \eta_t$. For $\gamma \in (0, 0.5]$ and $\varepsilon \in (0, 1]$, there is an ε -DP algorithm for releasing the counting query between $u, v \in V$ on a *t*-approximate shortest path in *G* that is $O(\eta_t \cdot \log^{2.5}(n) \cdot \log(1/\gamma)/\varepsilon)$ -accurate with probability $1 - \gamma$. **Theorem 1.** Let **T** be a *t*-collective tree spanner of *G* such that $|\mathbf{T}| = \eta_t$. For $\gamma \in (0, 0.5]$ and $\varepsilon \in (0, 1]$, there is an ε -DP algorithm for releasing the counting query between $u, v \in V$ on a *t*-approximate shortest path in *G* that is $O(\eta_t \cdot \log^{2.5}(n) \cdot \log(1/\gamma)/\varepsilon)$ -accurate with probability $1 - \gamma$.

Proof. We run the (ε/η_t) -DP mechanism given in **Algorithm 1** on each tree in **T**. By **Basic Composition** and a union bound, we can release the estimates over all of **T** with

$$O(\eta_t \cdot \log^{2.5}{(n)} \cdot \log{(1/\gamma)}/\varepsilon)$$

error with probability $1 - \gamma$.

17/20

Assuming the Erdös girth conjecture, any (2k - 1) spanner must have at least $\Omega(n^{1+(1/k)})$ edges, and this bound is tight.

Assuming the Erdös girth conjecture, any (2k - 1) spanner must have at least $\Omega(n^{1+(1/k)})$ edges, and this bound is tight. So, any (2k - 1) collective tree spanner must have at least $\Omega(n^{1/k})$ trees.

Assuming the Erdös girth conjecture, any (2k - 1) spanner must have at least $\Omega(n^{1+(1/k)})$ edges, and this bound is tight. So, any (2k - 1) collective tree spanner must have at least $\Omega(n^{1/k})$ trees.

The best (and possibly only) multiplicative, collective tree spanner in the literature has $k \cdot n^{1/k}$ trees and stretch $(k \log \log (n))$.

Assuming the Erdös girth conjecture, any (2k - 1) spanner must have at least $\Omega(n^{1+(1/k)})$ edges, and this bound is tight. So, any (2k - 1) collective tree spanner must have at least $\Omega(n^{1/k})$ trees.

The best (and possibly only) multiplicative, collective tree spanner in the literature has $k \cdot n^{1/k}$ trees and stretch $(k \log \log (n))$.

Open question 1 – Can we construct a collective tree spanner that has a size/stretch tradeoff that is closer to being optimal?

A *closely related* problem is the all-pairs shortest distances problem with differential privacy.

Chen et al. (2023). There is an algorithm which solves the DP APSD problem with $\tilde{O}(n^{1/2}/\varepsilon)$ -error w.h.p.

Chen et al. (2023). There is an algorithm which solves the DP APSD problem with $\tilde{O}(n^{1/2}/\varepsilon)$ -error w.h.p.

Bodwin et al. (2024). Any algorithm which solves the DP APSD problem must have error at least $\widetilde{\Omega}(n^{1/4})$.

Chen et al. (2023). There is an algorithm which solves the DP APSD problem with $\tilde{O}(n^{1/2}/\varepsilon)$ -error w.h.p.

Bodwin et al. (2024). Any algorithm which solves the DP APSD problem must have error at least $\widetilde{\Omega}(n^{1/4})$.

Open question 2 – Close the gap between these upper- and lower-bounds.

Chengyuan, Deng et al. (2022). Differentially Private Range Query on Shortest Paths. arXiv preprint. https://arxiv.org/abs/2212.07997

Bodwin, Greg et al. (2024). The Discrepancy of Shortest Paths. arXiv preprint. https://arxiv.org/abs/2401.15781

Abraham, Ittai et al. (2020). Ramsey Spanning Trees and Their Applications. ACM Trans. Algorithms 16.2. issn: 1549-6325.

Chen, Justin et al. (2023). Differentially Private All-Pairs Shortest Path Distances: Improved Algorithms and Lower Bounds, Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 5040-5067, 10.1137/1.9781611977554.ch184.

3