
Differentially Private Counting Queries on Approximate
Shortest Paths

The 17th Annual International Conference on Combinatorial
Optimization and Applications (COCOA’24)

Jesse Campbell

Duke Kunshan University

December 7th, 2024

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 1 / 20

Contents

1 Acknowledgments

2 Introduction & Preliminaries

3 A Recursive Tree Algorithm

4 A Generalization

5 Conclusion

6 References

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 2 / 20

Acknowledgments

Joint work with Dr. Chunjiang Zhu, Assistant Professor, University of
North Carolina at Greensboro.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 3 / 20

Acknowledgments

Work supported by NSF Grant CNS-2349369 and the Computing
Research Association via the NSF.

Work completed during the UNCG GraLNA 2024 REU.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 4 / 20

Problem Definition

Given the following information,

Public –
1 Weighted graph G = (V ,E , ω)

2 System of paths S ⊂ 2E

Private –
1 Edge attribute φ : E → R+

We wish to output the counting queries over S with differential privacy.

Counting Query Definition
A counting query over a path P ⊂ E is the number

∑
e∈P φ(e)

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 5 / 20

Problem Definition

Given the following information,

Public –
1 Weighted graph G = (V ,E , ω)

2 System of paths S ⊂ 2E

Private –
1 Edge attribute φ : E → R+

We wish to output the counting queries over S with differential privacy.

Counting Query Definition
A counting query over a path P ⊂ E is the number

∑
e∈P φ(e)

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 5 / 20

Problem Definition

Given the following information,

Public –
1 Weighted graph G = (V ,E , ω)

2 System of paths S ⊂ 2E

Private –
1 Edge attribute φ : E → R+

We wish to output the counting queries over S with differential privacy.

Counting Query Definition
A counting query over a path P ⊂ E is the number

∑
e∈P φ(e)

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 5 / 20

Problem Definition

Given the following information,

Public –
1 Weighted graph G = (V ,E , ω)

2 System of paths S ⊂ 2E

Private –
1 Edge attribute φ : E → R+

We wish to output the counting queries over S with differential privacy.

Counting Query Definition
A counting query over a path P ⊂ E is the number

∑
e∈P φ(e)

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 5 / 20

Problem Definition

Given the following information,

Public –
1 Weighted graph G = (V ,E , ω)

2 System of paths S ⊂ 2E

Private –
1 Edge attribute φ : E → R+

We wish to output the counting queries over S with differential privacy.

Counting Query Definition
A counting query over a path P ⊂ E is the number

∑
e∈P φ(e)

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 5 / 20

Motivation

Range counting – counting the number of points that are contained in a
certain geometrically-defined range

Range counting on graphs – ranges are defined as paths

Application – patient transfer network
Vertices represent medical facilities
Edges represent paths between facilities
Edge weights represent travel times along paths
Private edge attributes represent number of patients in-transfer along
paths

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 6 / 20

Motivation

Range counting – counting the number of points that are contained in a
certain geometrically-defined range
Range counting on graphs – ranges are defined as paths

Application – patient transfer network
Vertices represent medical facilities
Edges represent paths between facilities
Edge weights represent travel times along paths
Private edge attributes represent number of patients in-transfer along
paths

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 6 / 20

Motivation

Range counting – counting the number of points that are contained in a
certain geometrically-defined range
Range counting on graphs – ranges are defined as paths

Application – patient transfer network

Vertices represent medical facilities
Edges represent paths between facilities
Edge weights represent travel times along paths
Private edge attributes represent number of patients in-transfer along
paths

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 6 / 20

Motivation

Range counting – counting the number of points that are contained in a
certain geometrically-defined range
Range counting on graphs – ranges are defined as paths

Application – patient transfer network
Vertices represent medical facilities

Edges represent paths between facilities
Edge weights represent travel times along paths
Private edge attributes represent number of patients in-transfer along
paths

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 6 / 20

Motivation

Range counting – counting the number of points that are contained in a
certain geometrically-defined range
Range counting on graphs – ranges are defined as paths

Application – patient transfer network
Vertices represent medical facilities
Edges represent paths between facilities

Edge weights represent travel times along paths
Private edge attributes represent number of patients in-transfer along
paths

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 6 / 20

Motivation

Range counting – counting the number of points that are contained in a
certain geometrically-defined range
Range counting on graphs – ranges are defined as paths

Application – patient transfer network
Vertices represent medical facilities
Edges represent paths between facilities
Edge weights represent travel times along paths

Private edge attributes represent number of patients in-transfer along
paths

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 6 / 20

Motivation

Range counting – counting the number of points that are contained in a
certain geometrically-defined range
Range counting on graphs – ranges are defined as paths

Application – patient transfer network
Vertices represent medical facilities
Edges represent paths between facilities
Edge weights represent travel times along paths
Private edge attributes represent number of patients in-transfer along
paths

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 6 / 20

Differential Privacy Preliminaries

Neighboring Graphs
Two isomorphic graphs G1,G2 = (V ,E , ω) with edge attribute functions
φ1, φ2 : E → R+ are said to be neighboring if∑

e∈E
|φ1(e)− φ2(e)| ≤ 1

Sensitivity
The l1 sensitivity of A : X → RD is defined as

∆1(A) := max
X ,X ′

‖A(X)−A(X ′)‖1

where X ,X ′ are neighboring datasets.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 7 / 20

Differential Privacy Preliminaries

Neighboring Graphs
Two isomorphic graphs G1,G2 = (V ,E , ω) with edge attribute functions
φ1, φ2 : E → R+ are said to be neighboring if∑

e∈E
|φ1(e)− φ2(e)| ≤ 1

Sensitivity
The l1 sensitivity of A : X → RD is defined as

∆1(A) := max
X ,X ′

‖A(X)−A(X ′)‖1

where X ,X ′ are neighboring datasets.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 7 / 20

Differential Privacy

Differential Privacy (DP) Definition
An algorithm A : X → RD is said to be (ε, δ)-differentially private if, for
all outcomes S ⊆ RD and neighboring datasets X ,X ′,

P[A(X) ∈ S] ≤ eε · P[A(X ′) ∈ S] + δ

We call the case where δ = 0 pure differential privacy and the case where
δ > 0 approximate differential privacy.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 8 / 20

Differential Privacy

Differential Privacy (DP) Definition
An algorithm A : X → RD is said to be (ε, δ)-differentially private if, for
all outcomes S ⊆ RD and neighboring datasets X ,X ′,

P[A(X) ∈ S] ≤ eε · P[A(X ′) ∈ S] + δ

We call the case where δ = 0 pure differential privacy and the case where
δ > 0 approximate differential privacy.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 8 / 20

Results Overview

Citation Path System ε-DP (ε, δ)-DP
Deng et al. (2023) Shortest Õ(n1/3) Õ(n1/4)

Bodwin et al. (2024) Shortest – Ω̃(n1/4)

Our results (2024) (k log log (n))-approximate Õ(kn1/k) Õ(
√

kn1/(2k))

In general, let T be a t-collective tree spanner of G such that |T| = ηt .
There is a ε-DP algorithm for releasing the counting queries that is
Õ(ηt)-accurate and a (ε, δ)-DP algorithm that is Õ(

√
ηt)-accurate with

probability 1 − γ.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 9 / 20

Results Overview

Citation Path System ε-DP (ε, δ)-DP
Deng et al. (2023) Shortest Õ(n1/3) Õ(n1/4)

Bodwin et al. (2024) Shortest – Ω̃(n1/4)

Our results (2024) (k log log (n))-approximate Õ(kn1/k) Õ(
√

kn1/(2k))

In general, let T be a t-collective tree spanner of G such that |T| = ηt .
There is a ε-DP algorithm for releasing the counting queries that is
Õ(ηt)-accurate and a (ε, δ)-DP algorithm that is Õ(

√
ηt)-accurate with

probability 1 − γ.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 9 / 20

Differential Privacy Technology

Basic Composition
Let ε, δ ∈ [0, 1] and k ∈ N. If we run k mechanisms where each
mechanism is (ε/k, δ/k)-DP, then the entire algorithm is (ε, δ)-DP.

Laplace Mechanism
Given any function f : X → Rk , the Laplace mechanism on input X ∈ X
independently samples Y1, ...,Yk according to Lap(∆1(f)/ε) and outputs,

Mf ,ε(X) = f (X) + (Y1, ...,Yk)

The Laplace mechanism is ε-differentially private.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 10 / 20

Differential Privacy Technology

Basic Composition
Let ε, δ ∈ [0, 1] and k ∈ N. If we run k mechanisms where each
mechanism is (ε/k, δ/k)-DP, then the entire algorithm is (ε, δ)-DP.

Laplace Mechanism
Given any function f : X → Rk , the Laplace mechanism on input X ∈ X
independently samples Y1, ...,Yk according to Lap(∆1(f)/ε) and outputs,

Mf ,ε(X) = f (X) + (Y1, ...,Yk)

The Laplace mechanism is ε-differentially private.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 10 / 20

Collective Tree Spanners

Collective Tree Spanner Definition
A collection of spanning trees T of G is said to be an α-collective tree
spanner of G if for every u, v ∈ V , there is a tree T ∈ T such that
dT (u, v) ≤ α · dG(u, v).

Abraham et al. (2020). There is a polynomial time deterministic
algorithm that finds a (k log log (n))-collective tree spanner with size
k · n1/k .

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 11 / 20

Collective Tree Spanners

Collective Tree Spanner Definition
A collection of spanning trees T of G is said to be an α-collective tree
spanner of G if for every u, v ∈ V , there is a tree T ∈ T such that
dT (u, v) ≤ α · dG(u, v).

Abraham et al. (2020). There is a polynomial time deterministic
algorithm that finds a (k log log (n))-collective tree spanner with size
k · n1/k .

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 11 / 20

A Recursive Tree Algorithm

Lemma 5. Let T = (V ,E , ω) be a tree rooted at z ∈ V with ε ∈ (0, 1]
and γ ∈ (0, 0.5]. Then there is an ε-DP algorithm for releasing counting
queries from the root to all other vertices on T that is
O(log1.5 (n) · log (n/γ)/ε)-accurate with probability 1 − γ.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 12 / 20

A Recursive Tree Algorithm

Algorithm 1 DPCQ on Rooted Trees
Input: Tree T = (V ,E ,w) rooted at z ∈ V with edge attribute φ; parameter
ε ∈ (0, 1)
Output: ε-DP approximate counting queries in T , {ω̃(u, v)}u,v∈V

1: Let z∗ be the vertex in T such that the subtree rooted at z∗ has more than
n/2 vertices, but the subtree rooted at each of z∗’s children has at most n/2
vertices

2: Let z1, z2, ..., zα be the children of z∗

3: Let Ti be the subtree rooted at zi for i ∈ [α], and T0 = T − {T1, ..., Tα}
4: Sample X ∼ Lap(log (n)/ε) and let ω(z∗, T) = ω(z, z∗) + X
5: Let ω(z, T) = 0
6: Sample (X1,X2, ...,Xα) ∼ Lap(log (n)/ε) and let ω(zi , T) = ω(z∗, T) +

φ(z∗, zi) + Xi
7: Recursively compute counting queries in each subtree T0, T1, ..., Tα
8: For each vertex w ∈ V , if w ∈ Ti , let ω̃(z,w) = ω(zi , Tz) + ω(w , Ti)

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 13 / 20

A Recursive Tree Algorithm

Algorithm 1 DPCQ on Rooted Trees
Input: Tree T = (V ,E ,w) rooted at z ∈ V with edge attribute φ; parameter
ε ∈ (0, 1)
Output: ε-DP approximate counting queries in T , {ω̃(u, v)}u,v∈V

1: Let z∗ be the vertex in T such that the subtree rooted at z∗ has more than
n/2 vertices, but the subtree rooted at each of z∗’s children has at most n/2
vertices

2: Let z1, z2, ..., zα be the children of z∗

3: Let Ti be the subtree rooted at zi for i ∈ [α], and T0 = T − {T1, ..., Tα}
4: Sample X ∼ Lap(log (n)/ε) and let ω(z∗, T) = ω(z, z∗) + X
5: Let ω(z, T) = 0
6: Sample (X1,X2, ...,Xα) ∼ Lap(log (n)/ε) and let ω(zi , T) = ω(z∗, T) +

φ(z∗, zi) + Xi
7: Recursively compute counting queries in each subtree T0, T1, ..., Tα
8: For each vertex w ∈ V , if w ∈ Ti , let ω̃(z,w) = ω(zi , Tz) + ω(w , Ti)

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 13 / 20

A Recursive Tree Algorithm

Algorithm 1 DPCQ on Rooted Trees
Input: Tree T = (V ,E ,w) rooted at z ∈ V with edge attribute φ; parameter
ε ∈ (0, 1)
Output: ε-DP approximate counting queries in T , {ω̃(u, v)}u,v∈V

1: Let z∗ be the vertex in T such that the subtree rooted at z∗ has more than
n/2 vertices, but the subtree rooted at each of z∗’s children has at most n/2
vertices.

2: Let z1, z2, ..., zα be the children of z∗

3: Let Ti be the subtree rooted at zi for i ∈ [α], and T0 = T − {T1, ..., Tα}
4: Sample X ∼ Lap(log (n)/ε) and let ω(z∗, T) = ω(z, z∗) + X
5: Let ω(z, T) = 0
6: Sample (X1,X2, ...,Xα) ∼ Lap(log (n)/ε) and let ω(zi , T) = ω(z∗, T) +

φ(z∗, zi) + Xi
7: Recursively compute counting queries in each subtree T0, T1, ..., Tα
8: For each vertex w ∈ V , if w ∈ Ti , let ω̃(z,w) = ω(zi , Tz) + ω(w , Ti)

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 13 / 20

A Recursive Tree Algorithm

Algorithm 1 DPCQ on Rooted Trees
Input: Tree T = (V ,E ,w) rooted at z ∈ V with edge attribute φ; parameter
ε ∈ (0, 1)
Output: ε-DP approximate counting queries in T , {ω̃(u, v)}u,v∈V

1: Let z∗ be the vertex in T such that the subtree rooted at z∗ has more than
n/2 vertices, but the subtree rooted at each of z∗’s children has at most n/2
vertices

2: Let z1, z2, ..., zα be the children of z∗

3: Let Ti be the subtree rooted at zi for i ∈ [α], and T0 = T − {T1, ..., Tα}
4: Sample X ∼ Lap(log (n)/ε) and let ω(z∗, T) = ω(z, z∗) + X
5: Let ω(z, T) = 0
6: Sample (X1,X2, ...,Xα) ∼ Lap(log (n)/ε) and let ω(zi , T) = ω(z∗, T) +

φ(z∗, zi) + Xi
7: Recursively compute counting queries in each subtree T0, T1, ..., Tα
8: For each vertex w ∈ V , if w ∈ Ti , let ω̃(z,w) = ω(zi , Tz) + ω(w , Ti)

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 13 / 20

A Recursive Tree Algorithm

Algorithm 1 DPCQ on Rooted Trees
Input: Tree T = (V ,E ,w) rooted at z ∈ V with edge attribute φ; parameter
ε ∈ (0, 1)
Output: ε-DP approximate counting queries in T , {ω̃(u, v)}u,v∈V

1: Let z∗ be the vertex in T such that the subtree rooted at z∗ has more than
n/2 vertices, but the subtree rooted at each of z∗’s children has at most n/2
vertices

2: Let z1, z2, ..., zα be the children of z∗

3: Let Ti be the subtree rooted at zi for i ∈ [α], and T0 = T − {T1, ..., Tα}
4: Sample X ∼ Lap(log (n)/ε) and let ω(z∗, T) = ω(z, z∗) + X
5: Let ω(z, T) = 0
6: Sample (X1,X2, ...,Xα) ∼ Lap(log (n)/ε) and let ω(zi , T) = ω(z∗, T) +

φ(z∗, zi) + Xi
7: Recursively compute counting queries in each subtree T0, T1, ..., Tα
8: For each vertex w ∈ V , if w ∈ Ti , let ω̃(z,w) = ω(zi , Tz) + ω(w , Ti)

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 13 / 20

A Recursive Tree Algorithm

Algorithm 1 DPCQ on Rooted Trees
Input: Tree T = (V ,E ,w) rooted at z ∈ V with edge attribute φ; parameter
ε ∈ (0, 1)
Output: ε-DP approximate counting queries in T , {ω̃(u, v)}u,v∈V

1: Let z∗ be the vertex in T such that the subtree rooted at z∗ has more than
n/2 vertices, but the subtree rooted at each of z∗’s children has at most n/2
vertices

2: Let z1, z2, ..., zα be the children of z∗

3: Let Ti be the subtree rooted at zi for i ∈ [α], and T0 = T − {T1, ..., Tα}
4: Sample X ∼ Lap(log (n)/ε) and let ω(z∗, T) = ω(z, z∗) + X
5: Let ω(z, T) = 0
6: Sample (X1,X2, ...,Xα) ∼ Lap(log (n)/ε) and let ω(zi , T) = ω(z∗, T) +

φ(z∗, zi) + Xi
7: Recursively compute counting queries in each subtree T0, T1, ..., Tα
8: For each vertex w ∈ V , if w ∈ Ti , let ω̃(z,w) = ω(zi , Tz) + ω(w , Ti)

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 13 / 20

A Recursive Tree Algorithm

Algorithm 1 DPCQ on Rooted Trees
Input: Tree T = (V ,E ,w) rooted at z ∈ V with edge attribute φ; parameter
ε ∈ (0, 1)
Output: ε-DP approximate counting queries in T , {ω̃(u, v)}u,v∈V

1: Let z∗ be the vertex in T such that the subtree rooted at z∗ has more than
n/2 vertices, but the subtree rooted at each of z∗’s children has at most n/2
vertices

2: Let z1, z2, ..., zα be the children of z∗

3: Let Ti be the subtree rooted at zi for i ∈ [α], and T0 = T − {T1, ..., Tα}
4: Sample X ∼ Lap(log (n)/ε) and let ω(z∗, T) = ω(z, z∗) + X
5: Let ω(z, T) = 0
6: Sample (X1,X2, ...,Xα) ∼ Lap(log (n)/ε) and let ω(zi , T) = ω(z∗, T) +

φ(z∗, zi) + Xi
7: Recursively compute counting queries in each subtree T0, T1, ..., Tα
8: For each vertex w ∈ V , if w ∈ Ti , let ω̃(z,w) = ω(zi , Tz) + ω(w , Ti)

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 13 / 20

A Recursive Tree Algorithm

Algorithm 1 DPCQ on Rooted Trees
Input: Tree T = (V ,E ,w) rooted at z ∈ V with edge attribute φ; parameter
ε ∈ (0, 1)
Output: ε-DP approximate counting queries in T , {ω̃(u, v)}u,v∈V

1: Let z∗ be the vertex in T such that the subtree rooted at z∗ has more than
n/2 vertices, but the subtree rooted at each of z∗’s children has at most n/2
vertices

2: Let z1, z2, ..., zα be the children of z∗

3: Let Ti be the subtree rooted at zi for i ∈ [α], and T0 = T − {T1, ..., Tα}
4: Sample X ∼ Lap(log (n)/ε) and let ω(z∗, T) = ω(z, z∗) + X
5: Let ω(z, T) = 0
6: Sample (X1,X2, ...,Xα) ∼ Lap(log (n)/ε) and let ω(zi , T) = ω(z∗, T) +

φ(z∗, zi) + Xi
7: Recursively compute counting queries in each subtree T0, T1, ..., Tα
8: For each vertex w ∈ V , if w ∈ Ti , let ω̃(z,w) = ω(zi , Tz) + ω(w , Ti)

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 13 / 20

A Recursive Tree Algorithm

Algorithm 1 DPCQ on Rooted Trees
Input: Tree T = (V ,E ,w) rooted at z ∈ V with edge attribute φ; parameter
ε ∈ (0, 1)
Output: ε-DP approximate counting queries in T , {ω̃(u, v)}u,v∈V

1: Let z∗ be the vertex in T such that the subtree rooted at z∗ has more than
n/2 vertices, but the subtree rooted at each of z∗’s children has at most n/2
vertices

2: Let z1, z2, ..., zα be the children of z∗

3: Let Ti be the subtree rooted at zi for i ∈ [α], and T0 = T − {T1, ..., Tα}
4: Sample X ∼ Lap(log (n)/ε) and let ω(z∗, T) = ω(z, z∗) + X
5: Let ω(z, T) = 0
6: Sample (X1,X2, ...,Xα) ∼ Lap(log (n)/ε) and let ω(zi , T) = ω(z∗, T) +

φ(z∗, zi) + Xi
7: Recursively compute counting queries in each subtree T0, T1, ..., Tα
8: For each vertex w ∈ V , if w ∈ Ti , let ω̃(z,w) = ω(zi , Tz) + ω(w , Ti)

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 13 / 20

A Recursive Tree Algorithm

Algorithm 1 DPCQ on Rooted Trees
Input: Tree T = (V ,E ,w) rooted at z ∈ V with edge attribute φ; parameter
ε ∈ (0, 1)
Output: ε-DP approximate counting queries in T , {ω̃(u, v)}u,v∈V

1: Let z∗ be the vertex in T such that the subtree rooted at z∗ has more than
n/2 vertices, but the subtree rooted at each of z∗’s children has at most n/2
vertices

2: Let z1, z2, ..., zα be the children of z∗

3: Let Ti be the subtree rooted at zi for i ∈ [α], and T0 = T − {T1, ..., Tα}
4: Sample X ∼ Lap(log (n)/ε) and let ω(z∗, T) = ω(z, z∗) + X
5: Let ω(z, T) = 0
6: Sample (X1,X2, ...,Xα) ∼ Lap(log (n)/ε) and let ω(zi , T) = ω(z∗, T) +

φ(z∗, zi) + Xi
7: Recursively compute counting queries in each subtree T0, T1, ..., Tα
8: For each vertex w ∈ V , if w ∈ Ti , let ω̃(z,w) = ω(zi , Tz) + ω(w , Ti)

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 13 / 20

Tree Algorithm Analysis

Remark 1. Every released counting query is the sum of at most log n
estimates.

Proof. Every subtree has at most n/2 vertices, therefore the recursion
depth is bounded above by log n.

Accuracy analysis. We apply the following lemma,

Laplace R.V. Concentration Bound
Let X1, ...,Xt be independent random variables distributed according to
Lap(b), and let X = X1 + ...+ Xt . Then for all γ ∈ (0, 1), with probability
at least 1 − γ we have,

|X | < O(b
√

t log (1/γ))

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 14 / 20

Tree Algorithm Analysis

Remark 1. Every released counting query is the sum of at most log n
estimates.

Proof. Every subtree has at most n/2 vertices, therefore the recursion
depth is bounded above by log n.

Accuracy analysis. We apply the following lemma,

Laplace R.V. Concentration Bound
Let X1, ...,Xt be independent random variables distributed according to
Lap(b), and let X = X1 + ...+ Xt . Then for all γ ∈ (0, 1), with probability
at least 1 − γ we have,

|X | < O(b
√

t log (1/γ))

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 14 / 20

Tree Algorithm Analysis

Remark 1. Every released counting query is the sum of at most log n
estimates.

Proof. Every subtree has at most n/2 vertices, therefore the recursion
depth is bounded above by log n.

Accuracy analysis. We apply the following lemma,

Laplace R.V. Concentration Bound
Let X1, ...,Xt be independent random variables distributed according to
Lap(b), and let X = X1 + ...+ Xt . Then for all γ ∈ (0, 1), with probability
at least 1 − γ we have,

|X | < O(b
√

t log (1/γ))

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 14 / 20

Tree Algorithm Analysis

The error in each estimate ω̃(u, v) is the sum of at most log n i.i.d.
Laplace R.V.s distributed according to Lap(log (n)/ε), therefore by the
previous bound,

|ω̃(u, v)− ωT (u, v)| ≤ O(log1.5 (n) · log (1/γ)/ε)

with probability at least 1 − γ.

Privacy analysis. The estimates computed in each recursion are
(ε/ log (n))-DP by the Laplace Mechanism. By Basic Composition, the
entire algorithm is ε-DP.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 15 / 20

Tree Algorithm Analysis

The error in each estimate ω̃(u, v) is the sum of at most log n i.i.d.
Laplace R.V.s distributed according to Lap(log (n)/ε), therefore by the
previous bound,

|ω̃(u, v)− ωT (u, v)| ≤ O(log1.5 (n) · log (1/γ)/ε)

with probability at least 1 − γ.

Privacy analysis. The estimates computed in each recursion are
(ε/ log (n))-DP by the Laplace Mechanism. By Basic Composition, the
entire algorithm is ε-DP.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 15 / 20

Tree Algorithm Analysis

The error in each estimate ω̃(u, v) is the sum of at most log n i.i.d.
Laplace R.V.s distributed according to Lap(log (n)/ε), therefore by the
previous bound,

|ω̃(u, v)− ωT (u, v)| ≤ O(log1.5 (n) · log (1/γ)/ε)

with probability at least 1 − γ.

Privacy analysis. The estimates computed in each recursion are
(ε/ log (n))-DP by the Laplace Mechanism.

By Basic Composition, the
entire algorithm is ε-DP.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 15 / 20

Tree Algorithm Analysis

The error in each estimate ω̃(u, v) is the sum of at most log n i.i.d.
Laplace R.V.s distributed according to Lap(log (n)/ε), therefore by the
previous bound,

|ω̃(u, v)− ωT (u, v)| ≤ O(log1.5 (n) · log (1/γ)/ε)

with probability at least 1 − γ.

Privacy analysis. The estimates computed in each recursion are
(ε/ log (n))-DP by the Laplace Mechanism. By Basic Composition, the
entire algorithm is ε-DP.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 15 / 20

Extension to General Trees

Algorithm 1 suffices to compute DPCQ for any tree.

Arbitrarily pick a
root z and let ` be the least common ancestor of u, v ∈ V .

z

u

v

`

ω̃(u, v) = ω̃(z, u) + ω̃(z, v)− 2 · ω̃(z, `)

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 16 / 20

Extension to General Trees

Algorithm 1 suffices to compute DPCQ for any tree. Arbitrarily pick a
root z and let ` be the least common ancestor of u, v ∈ V .

z

u

v

`

ω̃(u, v) =

ω̃(z, u) + ω̃(z, v)− 2 · ω̃(z, `)

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 16 / 20

Extension to General Trees

Algorithm 1 suffices to compute DPCQ for any tree. Arbitrarily pick a
root z and let ` be the least common ancestor of u, v ∈ V .

z

u

v

`

ω̃(u, v) = ω̃(z, u)

+ ω̃(z, v)− 2 · ω̃(z, `)

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 16 / 20

Extension to General Trees

Algorithm 1 suffices to compute DPCQ for any tree. Arbitrarily pick a
root z and let ` be the least common ancestor of u, v ∈ V .

z

u

v

`

ω̃(u, v) = ω̃(z, u) + ω̃(z, v)

− 2 · ω̃(z, `)

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 16 / 20

Extension to General Trees

Algorithm 1 suffices to compute DPCQ for any tree. Arbitrarily pick a
root z and let ` be the least common ancestor of u, v ∈ V .

z

u

v

`

ω̃(u, v) = ω̃(z, u) + ω̃(z, v)− 2 · ω̃(z, `)

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 16 / 20

A Generalization

Theorem 1. Let T be a t-collective tree spanner of G such that |T| = ηt .
For γ ∈ (0, 0.5] and ε ∈ (0, 1], there is an ε-DP algorithm for releasing the
counting query between u, v ∈ V on a t-approximate shortest path in G
that is O(ηt · log2.5 (n) · log (1/γ)/ε)-accurate with probability 1 − γ.

Proof. We run the (ε/ηt)-DP mechanism given in Algorithm 1 on each
tree in T. By Basic Composition and a union bound, we can release the
estimates over all of T with

O(ηt · log2.5 (n) · log (1/γ)/ε)

error with probability 1 − γ.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 17 / 20

A Generalization

Theorem 1. Let T be a t-collective tree spanner of G such that |T| = ηt .
For γ ∈ (0, 0.5] and ε ∈ (0, 1], there is an ε-DP algorithm for releasing the
counting query between u, v ∈ V on a t-approximate shortest path in G
that is O(ηt · log2.5 (n) · log (1/γ)/ε)-accurate with probability 1 − γ.

Proof. We run the (ε/ηt)-DP mechanism given in Algorithm 1 on each
tree in T. By Basic Composition and a union bound, we can release the
estimates over all of T with

O(ηt · log2.5 (n) · log (1/γ)/ε)

error with probability 1 − γ.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 17 / 20

Collective Tree Spanners

Assuming the Erdös girth conjecture, any (2k − 1) spanner must have at
least Ω(n1+(1/k)) edges, and this bound is tight.

So, any (2k − 1)
collective tree spanner must have at least Ω(n1/k) trees.

The best (and possibly only) multiplicative, collective tree spanner in the
literature has k · n1/k trees and stretch (k log log (n)).

Open question 1 – Can we construct a collective tree spanner that has a
size/stretch tradeoff that is closer to being optimal?

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 18 / 20

Collective Tree Spanners

Assuming the Erdös girth conjecture, any (2k − 1) spanner must have at
least Ω(n1+(1/k)) edges, and this bound is tight. So, any (2k − 1)
collective tree spanner must have at least Ω(n1/k) trees.

The best (and possibly only) multiplicative, collective tree spanner in the
literature has k · n1/k trees and stretch (k log log (n)).

Open question 1 – Can we construct a collective tree spanner that has a
size/stretch tradeoff that is closer to being optimal?

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 18 / 20

Collective Tree Spanners

Assuming the Erdös girth conjecture, any (2k − 1) spanner must have at
least Ω(n1+(1/k)) edges, and this bound is tight. So, any (2k − 1)
collective tree spanner must have at least Ω(n1/k) trees.

The best (and possibly only) multiplicative, collective tree spanner in the
literature has k · n1/k trees and stretch (k log log (n)).

Open question 1 – Can we construct a collective tree spanner that has a
size/stretch tradeoff that is closer to being optimal?

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 18 / 20

Collective Tree Spanners

Assuming the Erdös girth conjecture, any (2k − 1) spanner must have at
least Ω(n1+(1/k)) edges, and this bound is tight. So, any (2k − 1)
collective tree spanner must have at least Ω(n1/k) trees.

The best (and possibly only) multiplicative, collective tree spanner in the
literature has k · n1/k trees and stretch (k log log (n)).

Open question 1 – Can we construct a collective tree spanner that has a
size/stretch tradeoff that is closer to being optimal?

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 18 / 20

APSD with Differential Privacy

A closely related problem is the all-pairs shortest distances problem with
differential privacy.

The problem is identical to DP counting queries if the
edge weights are kept private.

Chen et al. (2023). There is an algorithm which solves the DP APSD
problem with Õ(n1/2/ε)-error w.h.p.

Bodwin et al. (2024). Any algorithm which solves the DP APSD
problem must have error at least Ω̃(n1/4).

Open question 2 – Close the gap between these upper- and lower-bounds.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 19 / 20

APSD with Differential Privacy

A closely related problem is the all-pairs shortest distances problem with
differential privacy.The problem is identical to DP counting queries if the
edge weights are kept private.

Chen et al. (2023). There is an algorithm which solves the DP APSD
problem with Õ(n1/2/ε)-error w.h.p.

Bodwin et al. (2024). Any algorithm which solves the DP APSD
problem must have error at least Ω̃(n1/4).

Open question 2 – Close the gap between these upper- and lower-bounds.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 19 / 20

APSD with Differential Privacy

A closely related problem is the all-pairs shortest distances problem with
differential privacy.The problem is identical to DP counting queries if the
edge weights are kept private.

Chen et al. (2023). There is an algorithm which solves the DP APSD
problem with Õ(n1/2/ε)-error w.h.p.

Bodwin et al. (2024). Any algorithm which solves the DP APSD
problem must have error at least Ω̃(n1/4).

Open question 2 – Close the gap between these upper- and lower-bounds.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 19 / 20

APSD with Differential Privacy

A closely related problem is the all-pairs shortest distances problem with
differential privacy.The problem is identical to DP counting queries if the
edge weights are kept private.

Chen et al. (2023). There is an algorithm which solves the DP APSD
problem with Õ(n1/2/ε)-error w.h.p.

Bodwin et al. (2024). Any algorithm which solves the DP APSD
problem must have error at least Ω̃(n1/4).

Open question 2 – Close the gap between these upper- and lower-bounds.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 19 / 20

APSD with Differential Privacy

A closely related problem is the all-pairs shortest distances problem with
differential privacy.The problem is identical to DP counting queries if the
edge weights are kept private.

Chen et al. (2023). There is an algorithm which solves the DP APSD
problem with Õ(n1/2/ε)-error w.h.p.

Bodwin et al. (2024). Any algorithm which solves the DP APSD
problem must have error at least Ω̃(n1/4).

Open question 2 – Close the gap between these upper- and lower-bounds.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 19 / 20

References

Chengyuan, Deng et al. (2022). Differentially Private Range Query on
Shortest Paths. arXiv preprint. https://arxiv.org/abs/2212.07997

Bodwin, Greg et al. (2024). The Discrepancy of Shortest Paths. arXiv
preprint. https://arxiv.org/abs/2401.15781

Abraham, Ittai et al. (2020). Ramsey Spanning Trees and Their
Applications. ACM Trans. Algorithms 16.2. issn: 1549-6325.

Chen, Justin et al. (2023). Differentially Private All-Pairs Shortest Path
Distances: Improved Algorithms and Lower Bounds, Proceedings of the
2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
5040-5067, 10.1137/1.9781611977554.ch184.

Jesse Campbell DP Counting Queries on ASP December 7th, 2024 20 / 20

	Acknowledgments
	Introduction & Preliminaries
	A Recursive Tree Algorithm
	A Generalization
	Conclusion
	References

