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Open questions will be in orange!
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Introduction

Country Populations

Frequency of leading digits of population by country (2020).
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Introduction

Fibonacci Numbers

The Fibonacci sequence is given by,

F (n) = F (n− 1) + F (n− 2) where F (0) = F (1) = 1

Which graph is correct?

Frequency of leading digits of first 50,000 Fibonacci numbers.
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Introduction

Benford’s Law Visualization

Digit Probability P (d) Relative Size of P (d)

1 0.301
2 0.176
3 0.125
4 0.097
5 0.079
6 0.067
7 0.058
8 0.051
9 0.046
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Introduction

History of Benford’s Law

That the ten digits do not occur with equal frequency must be evident
to any one making much use of logarithmic tables, and noticing how much
faster the first pages wear out than the last ones. —Simon Newcomb
(1881)

Simon Newcomb, 1905
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Introduction

History of Benford’s Law
Benford’s Law was rediscovered by physicist Frank Benford in 1938.
Compiled over 20 tables containing over 20,000 data points supporting the
law

Frank Benford’s original data supporting Benford’s Law (1938)
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Mathematical Framework

Notation

Let Dn(x) be the nth significant decimal digit

D1(π) = 3, D2(π) = 1, D3(π) = 4

Dn(300) = Dn(3) = Dn(0.003)
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Mathematical Framework

What is Benford’s Law

Benford’s Law (1st digit)
Prob(D1 = d) = log10(1 +

1
d )

And to make it a bit more general...

Benford’s Law
Prob(D1 = d1, D2 = d2, ..., Dm = dm) = log10(1 + (

∑m
j=1 10

m−jdj)
−1)
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Mathematical Framework

Example

Pick any number from a distribution that follows Benford’s Law.

What’s the probability that the first five digits are the same as π?

Prob(D1 = 3, D2 = 1, D3 = 4, D4 = 1, D5 = 5) = log10(1 +
1

31415 )

=log10(
31416
31415 ) ≈ 0.0000138
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Suprising Result?

Prob(D2 = 1) =
∑9

j=1 log10(1 +
1

10j+1 ) = log10(
6029312
4638501 ) ≈ 0.1138

But...

Prob(D2 = 1|D1 = 1) =
log10(1+

1
11 )

log10(2)
= log10(12)−log10(11)

log10(2)
= 0.1255

Conclusion: Significant digits are dependent.
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Significand

Another useful concept when taking about Benford’s Law is the significand, also
called the mantissa.

The significand of a number, call it S(x), is its coeffcient when expressed in
”scientific” (floating-point) notation.

P = 6.626× 10−34 (Plank Constant)
S(P ) = 6.626
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Significand Function

Explicity, the base-10 significand function S : R → [1, 10) is given by,

Significand Function
S(x) = 10log |x|−⌊log |x|⌋, S(0) := 0

S(
√
2) = S(−

√
2) = S(10

√
2) =

√
2 = 1.414...

S(π−1) = S(10π−1) = 10π−1 = 3.183

Using the significand we can state Benford’s Law in a new (and super concise)
way:

Benford’s Law
Prob(S ≤ t) = log(t), t ∈ [1, 10)
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σ-Algebras

Informal statements about Benford’s Law all involve probabilities, therefore for
mathematical precision it is necessary to reformulate these statements in the
setting of rigorous probability theory.

A probability space (Ω,F ,P) consists of three objects: an outcome space Ω, a
σ-algebra F , and a probability measure P.

A σ-algebra F on Ω is simply a subset of Ω such that ∅ ∈ F and F is closed
under complements and countable unions.

Example: The power set of Ω, which is the set containing all possible subsets of
Ω, is the largest possible σ-algebra on Ω.
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σ-Algebra Generated by a Function

For a subset C on R and a function f : Ω → R, the pre-image of C under f is
defined as:

f−1(C) = {ω ∈ Ω : f(ω) ∈ C}

The σ-algebra generated by f is:

σ(f) = {f−1(J) : J ⊂ R, J an interval}

σ(f) is the smallest σ-algebra on Ω that contains all sets of the form
{ω ∈ Ω : a ≤ f(ω) ≤ b} for every a, b ∈ R.
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Mathematical Framework

Significand σ-Algebra

We define the significand σ-algebra S to be the σ-algebra generated by the
significand function S, i.e. S = R+ ∩ σ(S)

Importance: For every event A ∈ S and every x > 0, knowing S(x) is enough to
determine whether x ∈ A or x /∈ A.

Corollary: S is the family of events A ∈ R+ that can be described completely
in-terms of their significands. For example,

A1 = {x > 0 : D1(x) = 1, D3(x) ̸= 7}
A2 = {x > 0 : Dm(x) ∈ {5, 6} for all m ∈ N}
A3 = {x > 0 : S(x) ∈ Q}

Whereas, for example, the interval [1, 2] does not belong to S.
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Questions you may have...

How do we derive the distribution function for Benford’s Law?

Which distributions of numbers follow Benford’s Law?
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Questions you may have...

How do we derive the distribution function for Benford’s Law?

Which distributions of numbers follow Benford’s Law?
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Mathematical Derivation
Let Ω = R+ be our sample space.

We want to find a probability measure P (d) on Ω, where d ∈ [0..9] is the leading
digit of a number in Ω.

We can begin by defining the set of numbers in Ω with leading digit d. We can
represent this in set notation as

S(d) =
∞∪

n=−∞
[d · 10n, (d+ 1) · 10n)

Let f(x) be a continuous density function on Ω, then it immediately follows that

P (d) =
∞∑

n=−∞

(d+1)·10n∫
d·10n

f(x) dx

Where P (d) is the probability of picking a number from distribution f(x)
beginning with d.
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Mathematical Derivation

Introducing ∆n = 1, we can approximate the double integral,

P (d) = (
∞∑

n=−∞

(d+1)·10n∫
d·10n

f(x) dx)∆n ≈
∞∫

−∞
(
(d+1)·10n∫
d·10n

f(x) dx) dn

Make the following substitutions:

t = d · 10n; dn = dt
tln(10)

x = ty; dx = tdy

Giving

P (d) ≈
∞∫
0

1+ 1
d∫

1

f(ty)t dy · dt
t ln 10 = 1

ln 10

∞∫
0

dt
1+ 1

d∫
1

f(ty) dy
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Mathematical Derivation

Let f(ty) = ϕ(y, t). By Fubini’s Theorem,

P (d) ≈ 1
ln10

∞∫
0

dt
1+ 1

d∫
1

ϕ(y, t) dy = 1
ln10

1+ 1
d∫

1

dy
∞∫
0

ϕ(y, t) dt

= 1
ln 10

1+ 1
d∫

1

1
ydy

∞∫
0

f(x) dx =
ln 1+ 1

d

ln 10

∫
Ω

f(x) dx =
ln 1+ 1

d

ln 10

By the change-of-base rule for logarithms, we are left with,

Benford’s Law
P (d) = log10 (1 +

1
d )
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d∫

1

1
ydy

∞∫
0

f(x) dx =
ln 1+ 1

d

ln 10

∫
Ω

f(x) dx =
ln 1+ 1

d

ln 10

By the change-of-base rule for logarithms, we are left with,

Benford’s Law
P (d) = log10 (1 +

1
d )
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Mathematical Framework

Benford’s Law Derivation

Thus, even though many common sequences... do not follow Benford’s
Law, those that do are so ubiquitous that many authors have assumed
that a simple explanation must exist... [however], there does not appear
to be a simple derivation of Benford’s Law that both offers a ”correct
explanation” and... provide(s) insight. —Arno Berger (2011)

I think in statistics we need derivations, not proofs. That is, lines of
reasoning from some assumptions to a formula, or a procedure, which
may or may not have certain properties in a given context, but which, all
going well, might provide some insight. —Terry Speed (2009)
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Mathematical Framework

Questions you may have...

How do we derive the distribution function for Benford’s Law?

Which distributions of numbers follow Benford’s Law?
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Benford Sequences

Which distributions of numbers follow Benford’s Law?

A sequence (xn) is said to be Benford if,

Benford Sequence

limN→+∞
#{1≤n≤N :S(xn)≤t}

N = log t, for all t ∈ [1, 10)

Where #{·} denotes the number of elements in the set.
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Benford Sequences

Example (Natural Numbers)

Is the sequence of natural numbers (xn) = n Benford?

Let’s look at a plot of natural numbers n vs. 1
n ·#{N ∈ [1, n] : S(N) = 1}
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Benford Sequences

Example (Natural Numbers)

As we might expect, we see that,

lim inf N → +∞(#{N∈[1,n]:S(N)=1}
n ) = 1

9

and,

lim supN → +∞(#{N∈[1,n]:S(N)=1}
n ) = 5

9

So the limit does not exist, and (xn) = n is not Benford!
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Benford Sequences

Example (Exponential)
Is the sequence (xn) = 2n Benford?

Yes. Why?

Plot of n vs. 1
n
·#{N ∈ [1, n] : S(2N ) ≤ 7} with line y = log(7) shown.

Proof later.
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Example (Exponential)
Is the sequence (xn) = 2n Benford?

Yes. Why?

Plot of n vs. 1
n
·#{N ∈ [1, n] : S(2N ) ≤ 7} with line y = log(7) shown.
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Benford Sequences

Example (Exponential)

Is the sequence (xn) = 2n Benford?

What about in base 2?

(xn) = 2nbase 2 = 1, 10, 100, 1000, 10000, ...

P rob(D2
(2) = 0) = 1− Prob(D2

(2) = 1) = log2(3)− 1 > 1
2

So (xn) = 2nbase 2 is not Benford!
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Example (Exponential)
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Benford Sequences

Other Benford Sequences

The Fibonacci Sequence

(fn(x0)) where f(x) = axb with a > 0, b > 1

Benford for almost all x0 > 0, but every non-empty open interval in R+

contains uncountably many x0 for which (fn(x0)) is not Benford.

(θn) for any irrational θ.

Prime numbers
”Logarithmic Benford”
Logarithmic density of {n ∈ N : S(xn) ≤ t} = log(t)
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Benford Sequences

Application to Newton’s Method

Newton’s Method is used to approximate the roots of real-valued functions using
the function,

Ng(x) = x− g(x)
g′(x)

It can be shown that for x0 sufficiently close to a root x′ (i.e. g(x′) = 0), that

limn→∞(Ng
n(x0)) = x′
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Benford Sequences

Application to Newton’s Method

Theorem 3.1
Let the function g : I → R be real-analytic with g(x′) = 0, and assume that g is
not linear.

(i) If x′ is a simple root (multiplicity 1), then (xn − x′) and (xn+1 − xn) are both
Benford for almost all x0 in a neighborhood of x′.

(ii) If x′ has multiplicity ≥ 2, then (xn − x′) and (xn+1 − xn) are Benford for all
x0 ̸= x′ sufficiently close to x′.
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Benford Sequences

Application to Newton’s Method

Example: Let g(x) = ex − 2, then g has a root at x′ = ln(2) and
Ng(x) = x− 1 + 2e−x. By the above theorem, the sequences (xn − x′) and
(xn+1 − xn) are both Benford for almost all x0 near x′.

Why it matters?: In computer algorithms, roundoff errors are inevitable. In
computer implementations of Newton’s Method, there is normally an assumption
of uniformly distributed fraction parts. Such an assumption would lead to an
underestimate in the average relative round-off error in the above case.
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Benford Sequences

Application to Newton’s Method

”[I]n order to analyze the average behavior of floating-point arithmetic
algorithms, we need some statistical information that allows us to deter-
mine how often various cases arise... [If, for example, the] leading digits
tend to be small [, that] makes the most obvious techniques of ”average
error” estimation for floating-point calculations invalid. The relative error
due to rounding is usually... more than expected. —Donald Knuth,
The Art of Computer Programming (1968)

Question: Can Benford’s Law improve current roundoff error approximation
techniques in floating-point arithmetic?
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Benford Random Variables and Distributions

Benford Random Variables

Benford Random Variables
A random variable X on probability space (Ω,F ,P) is Benford if

P (S(X) ≤ t) = log(t) for all t ∈ [1, 10)

Or equivalently, S(X) is an absolutely continous random variable with density
fS(X)(t) = t−1 log(e)

Examples:
P(D1(X) = 1) = P(1 ≤ S(X) < 2) = log(2)

P(D1(X) = 9) = log( 109 )

P(D1(X) = 3, D2(X) = 1, D3(X) = 4) = log( 315314 )
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Benford Random Variables

Benford Random Variables
A random variable X on probability space (Ω,F ,P) is Benford if

P (S(X) ≤ t) = log(t) for all t ∈ [1, 10)
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Benford Random Variables and Distributions

N-Valued Random Variables

One might consider classifying N-valued random variables (i.e. P(X ∈ N) = 1) as
Benford on N if

P(S(X) ≤ t) = log(t)

However, no such random variable exists!
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Benford Random Variables and Distributions

Which Distributions are Benford?

None of the standard continuous probability distributions (e.g., uniform,
exponential, normal, etc.) are Benford, however their deviation from Benford’s law
can be quantified using the metric

∆∞ := 100 · sup1≤t<10 |FS(X)(t)− log(t)|

Where ∆∞ = 0 if and only if X is Benford and ∆∞ = 100 if and only if
P(S(X) = 1) = 1
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Benford Random Variables and Distributions

Example: Exponential Distribution

Consider the exponential distribution centered a 1 with cumulative distribution
given by: {

0 if x < 0

1− e−x otherwise

P(D1(X) = 1) = P(X ∈
∪

k∈Z 10
k[1, 2)) =

∑
k∈Z(e

−10k − e−2·10k)

P(D1(X) = 1) > (e
1
10 − e

−2
10 ) + (e−1 − e−2) + (e−10 − e−20) ≈ 0.3186 > log(2)

∆∞ = 3.05 i.e. |P(S(X) ≤ t)− log(t)| is small for t ∈ [1, 10).
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Benford Random Variables and Distributions

Other Common Distributions

Here is a table of other common distributions and how closely they follow
Benford’s Law:

Distributions ∆∞

Uniform [0,1] 26.88
Exponential(1) 3.05

Pareto(1) 26.88
Arcsin 28.77

Standard Normal 6.05
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Benford Random Variables and Distributions

Note on Uniform Distribution

Theorem 4.1
For every uniformly distributed positive random variable X,

max1≤t<10|FS(X)(t)− log(t)| ≥ 1
18 + 1

2 (log(9)− log(e) + log log(e)) ≈ 0.1344

And this bound is sharp.

Fallacy: Regularity and large spread implies Benford’s Law.

Now, this claim is clearly false. No matter how large the spread, if data follows a
uniform distribution then it does not conform to Benford’s Law.
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Connection to Uniform Distribution

Uniform Distribution Modulo 1

If a sequence is uniformly distributed modulo 1 (u.d. mod 1), the distribution of
it’s fractional parts is uniform on the interval [0, 1).

For convenience, let ⟨x⟩ = x mod 1 denote the fractional part of x.

Uniform Distribution Modulo 1
A sequence (xn) = (x1, x2, ...) of real numbers is u.d mod 1 if

limN→∞
#{1≤n≤N :⟨xn⟩≤s}

N = s for all s ∈ [0, 1)
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Connection to Uniform Distribution

Uniform Distribution Modulo 1 (Random Variables)

This definition has a natural extension to random variables, namely,

Uniform Distribution Modulo 1 (Random Variables)
A random variable (r.v.) X on a probability space (Ω, σ,P) is u.d. mod 1 if

P(⟨X⟩ ≤ s) = s for all s ∈ [0, 1)
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Connection to Uniform Distribution

Connection to Benford’s Law

Theorem 5.1
A sequence of real numbers or random variable is Benford if and only if the
decimal logarithm of its absolute value is uniformly distributed modulo one.

Importance: Theorem 5.1 is one of the main tools in the theory of Benford’s law
because it allows application of the powerful theory of uniform distribution modulo
one.
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Connection to Uniform Distribution

Proof of Theorem 5.1

Let X be a random variable. Then, for all s ∈ [0, 1),

P(⟨log |X|⟩ ≤ s) = P(log |X| ∈
∪

k∈Z[k, k + s])

= P(|X| ∈
∪

k∈Z[10
k, 10k+s]) + P(X = 0) = P(S(X) ≤ 10s)

Recall that a random variable Y is Benford if

P(S(Y ) ≤ t) = log(t)

Hence, P(⟨log |X|⟩ ≤ s) = s ⇔ P(S(X) ≤ 10s) = log(10s) = s

The proofs for sequences are completely analagous.
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Hence, P(⟨log |X|⟩ ≤ s) = s ⇔ P(S(X) ≤ 10s) = log(10s) = s

The proofs for sequences are completely analagous.
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Connection to Uniform Distribution

Applications

Proposition: Let (xn) = (x1, x2, ...) be a sequence of real numbers.

If limn→∞(xn+1 − xn) = θ for some irrational θ, then (xn) is u.d. mod 1.

Example: Consider the family of sequences (dn) = (n log(α)). If log(α) is
irrational, i.e. α = 2 or α = π, then by the above proposition (dn) is u.d. mod 1.

The corresponding Benford sequences (those whose decimal logarithm is given by
(dn)) are 2n and πn.

It is easy to show through this method that, for instance, θn is Benford for any
irrational θ.
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Real Life Examples

US Taxpayer Records

Although US financial data is safeguarded, forensic analysist Mark Nigiri sourced
157,518 taxpayer records from 1978 for analysis using Benford’s Law.

Note that we can use the general Benford’s Law given by

Prob(D1 = d1, D2 = d2, ..., Dm = dm) = log10(1 + (
∑m

j=1 10
m−jdj)

−1)

to compute the joint probability for the of the first n digits occurring.
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Real Life Examples

US Taxpayer Records

Frequency of first two digits: Dividend income declared

Question: Why are there spikes at multiples of 10?
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Real Life Examples

US Taxpayer Records

Frequency of first two digits: Interest expense claimed

Question: Why are the higher values supressed here?
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Real Life Examples

2020 US Presidential Election

Following the 2020 US presidential election, many online debates were started due
to some election data seemingly not matching Benford’s Law.

Specifically, online threads opened about the legitimacy of the election data
reported from the city of Chicago.

The city of Chicago has 2,069 precincts which report election data. Each precinct
is roughly the same size, with the smallest reporting 39 votes, and the biggest
1655, with an average of 516 and a standard deviation of 173.
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Real Life Examples

2020 US Presidential Election

Plots of 2020 Chicago presidential election data by candiadate for 2,069 precincts with
the predicted values by Benford’s Law shown.
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Real Life Examples

2020 US Presidential Election

[I]f a competitive two candidate race occurs in districts whose magni-
tude varies between 100 and 1000, the modal first digit for each candi-
date’s vote will not be 1 or 2 but rather 4, 5, or 6. — Henry E. Brady
(2005)
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