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Abstract

The chromatic symmetric function (CSF) is a symmetric function associated to a graph,
defined as a sum over its proper colorings. One interesting result about the CSF that has inspired
some recent work is forming a CSF basis for the set of symmetric functions. Surprisingly, any
arbitrary collection of connected graphs, so long as there is exactly one graph of each vertex
size up to n, can be used to form an algebraically independent basis for the set of symmetric
functions homogeneous of degree n. This has inspired the work of finding simple expressions for
the CSF of infinite families of connected graphs in-terms of known symmetric function bases.
In this note, we give simple expressions for the complete bipartite and windmill graphs in the
monomial symmetric function basis. Moreover, we give an explicit expression for lollipop graphs
in the power sum symmetric function basis.

1 Introduction

The chromatic symmetric function (CSF) was introduced by Richard Stanley in his 1995 seminal
work, A Symmetric Function Generalization of the Chromatic Polynomial of a Graph [5]. Given a
graph G = (V,E), the CSF of G is denoted as XG and is defined as a sum over all proper colorings
ϕ : V → N of G, and is defined by,

XG =
∑
ϕ

xϕ =
∑
ϕ

∏
v∈V

xϕ(v)

Based on this definition, it is not hard to see the following result.

Lemma 1.1. Let G = (V1, E1) and H = (V2, E2) be graphs, and let G+H denote the disjoint union
of G and H, then,

XG+H = XG ·XH

In the same paper, Stanley also gave combinatorial interpretations of the CSF in the monomial
and power sum symmetric function bases. Firstly, we state the result for the monomial basis.

Lemma 1.2 ([5]). Let λ = (λ1, λ2, ..., λk) ⊢ n = #V and aλ be the number of partitions of V into
components of size λ1, λ2, ..., λk such that there are no edges between any two vertices in the same
component. Then,

XG =
∑
λ⊢n

aλm̃λ
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Before we state the result for the power sum basis, as a bit of notation, if G = (V,E) is a graph
and S ⊂ E, then we denote by G(S) = (V, S) the subgraph of G with edge set S. Moreover, we
denote by λG(S) the partition of n = |V | formed by sorting the number of vertices in each connected
component of G(S) in weakly decreasing order. Where G is obvious, we omit from the subscript
and simply write λ(S).

Lemma 1.3 ([5]).

XG =
∑
S⊂E

(−1)|S|pλ(S)

One interesting result about the chromatic symmetric function that has inspired much recent
work is forming a CSF basis for the set of symmetric functions. Surprisingly, we have the following
lemma of Cho and Willigenburg.

Lemma 1.4 ([1]). Let {Gk}k≥1 be a set of connected graphs such that Gk has k vertices for each
k ≥ 1. Moreover, define Gλ = Gλ1

+ Gλ2
+ ... + Gλl(λ)

where ”+” is the disjoint union of graphs,
then {XGλ

: λ ⊢ n} is a Q-basis for Λn.

Furthermore, the set {XGk
}k≥1 is algebraically independent, like the set {ek}k≥1, such that one

may even consider calling the above lemma the Chromatic Version of the Fundamental Theorem of
Symmetric Functions. Previous work such as [1, 3] has examined the bases formed by CSFs of families
of graphs with simple structures, such as paths and stars. In particular, the main contribution of
[1] was giving explicit expansions of several simple families of graphs in known symmetric function
bases in order to better understand chromatic bases. Their results are summarized in the following
lemma.

Lemma 1.5 ([1]). Let Kn be the complete graph, Sn be the star graph, Pn be the path graph, and
Cn be the cycle graph, all on n vertices. Then,

(i) XKn = n!en

(ii) XSn+1 =

n∑
r=0

(−1)r
(
n

r

)
p(r+1,1n−r)

(iii) XPn
=

∑
λ=(nrn ,...,1r1 )⊢n

(−1)n−
∑n

i=1 ri
(
∑n

i=1 ri)!∏n
i=1(ri)!

pλ

(iv) XCn
=

∑
λ=(nrn ,...,1r1 )⊢n

(−1)n−
∑n

i=1 ri
(
∑n

i=1 ri)!∏n
i=1(ri)!

(
1 +

n∑
j=2

(j − 1)
rj∑n
i=1 ri

)
pλ + (−1)npn

Proof. See Theorem 8 in [1], pg. 4.

We extend the results of [1] by giving explicit formulas for the chromatic symmetric function of
the complete bipartite graph Kn,m and windmill graph Wk,r in the monomial symmetric function
basis, and the lollipop graph Ln,c in the power sum basis. The complete bipartite graphs Kn,m are
one of the most famously-studied families of graphs, which consist of a sets of n independent vertices
and m independent vertices. Then, every possible edge between the two sets is in the edge set of
Kn,m. The windmill graphs are a generalization of friendship graphs. Specifically, Wk,r is formed
by taking r independent copies of the complete graph Kk, and adjoining the graphs together at one
vertex. See Figure 1 for an example of a complete bipartite and windmill graph.

2 Expressions for Bipartite, Windmill, and Lollipop Graphs

Before we state the first theorem which gives expressions for complete bipartite graphs and windmill
graphs in the monomial basis, we state the following general result about change-of-basis between
monomial and elementary symmetric functions.
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Lemma 2.1 ([6]). Let λ = (λ1, ..., λk), µ = (µ1, ..., µℓ) ⊢ n be partitions and Mλ,µ the number of
0, 1-matrices with row sums λi and column sums µj, then,

eµ =
∑
λ⊢n

Mλ,µmλ

Moreover, for simplicity, if λ = (nrn , (n− 1)rn−1 , ..., 2rn , 1r1) where each ri ≥ 0 for 1 ≤ i ≤ n, we

define λ̃ = r1!r2!...rn!. Now, we go on to state our first main result.

Theorem 2.1. Let Kn,m be the complete bipartite graph with n+m vertices and Wk,r be the windmill
graph which is the composition of r copies of Kk. Then,

(i) XKn,m
=

∑
λ⊢(n+m)

∑
µ⊢n
µ⊂λ

λ̃

µ̃ · ˜(λ− µ)

n! ·m!

λ1!λ2!...λl(λ)!
mλ

(ii) XWk,r
= (k − 1)!r

∑
λ⊢r(k−1)+1

r1M(λ−(1)),((k−1)r)mλ

where r1 is the number of 1’s in λ, and M(µ,((k−1)r) is the number of l(µ) × r matrices with

entires in {0, 1} such that there are exactly (k − 1) 1s in each column and µj 1s in the jth row.

Proof. (i) By Lemma 1.2, for each partition λ ⊢ n+m the coefficient of m̃λ in XKn,m is the number
of partitions of V into independent sets of type λ. Let V1 be the set of n vertices in Kn,m with no
edges between them. Likewise, let V2 be the set of m vertices in Kn,m with no edges between then.
Since for every u ∈ V1 and v ∈ V2, (u, v) ∈ E(Kn,m), then any independent set in Kn,m must be
a subset of either V1 or V2. We first pick the sizes of the independent sets in V1, represented by
µ = (µ1, ..., µk) ⊂ λ. Suppose that we have not chosen any independent sets from V1, then there
are

(
n
µ1

)
ways to choose an independent set of size µ1, since each vertex in V1 in independent with

respect to every other vertex in V1. Likewise, there are
(
n−µ1

µ2

)
ways to choose the independent set

of size µ2 from the remaining n− µ1 vertices in V1 after the first independent set has already been
chosen. Continuing in this way, there are,

l(µ)∏
j1

(
n−

∑j1−1
ℓ=1 µℓ

µj1+1

)
=

n!

µ1!(n− µ1)!

(n− µ1)!

µ2!(n− µ1 − µ2)!
...

(n−
∑j1−1

ℓ=1 µℓ)!

µl(µ)!(n−
∑l(µ)

ℓ=1 µℓ)!
=

n!

µ1!µ2!...µl(µ)!

ways to choose independent sets with sizes corresponding to µ from the set V1 where each
independent set is distinct.1 It is not hard to see that, by the same logic, there are,

l(λ)−l(µ)∏
j2=1

(
m−

∑j2−1
ℓ=1 (λ− µ)ℓ

(λ− µ)j2+1

)
=

m!

(λ− µ)1!(λ− µ)2!...(λ− µ)l((λ−µ))!

ways to choose independent sets with sizes corresponding to λ−µ from V2 where each independent
set is distinct. Lastly, we must account for the overcounting in the choice of independent sets.
Namely, if there are multiplicities in the partition µ or (λ−µ), then we are overcounting the choices
of independent sets with the size of these repeated numbers as the order in which they are selected

does not matter. To account for this, we divide each product in the sum by 1/µ̃ and 1/ ˜(λ− µ),
respectively.

1This is equivalent to the counting performed by ”multinomial coefficients”, which are not used here for improved
clarity of the result.
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Figure 1: Complete bipartite graph K5,3 (left), windmill graph W4,4 (right)

(ii) We first note that there are no nontrivial independent sets (those containing more than one
vertex) containing the center vertex (where all of the complete graphs are adjoined) in Wk,r, since
it is connected to every other vertex in Wk,r. Hence, for any partition λ = ((#V )r#V , ..., 1r1) ⊢ #V
such that r1 = 0, we must have that the coefficient of mλ in XWk,r

is. 0. Therefore, we restrict
ourselves to partitions with r1 > 0.

Assuming that the central vertex is in an independent set of size 1, we wish to find the number
of ways to groups the remaining vertices, which can be thought-of as r independent copies of Kk−1

into independent sets of size λ − (1). We call the graph of Wk,r with the central vertex and all of
its adjacent edges removed W ′

k,r. Moreover, by (i) in Lemma 1.5,

XW ′
k,r

= (XKk−1
)r

= ((k − 1)!ek−1)
r

= (k − 1)!re((k−1)r)

= (k − 1)!r
∑

λ⊢r(k−1)

Mλ,((k−1)r)mλ

where we used Lemma 1.1 in the first step and Lemma 2.1 in the final step. Hence, by
the interpretation of the augmented monomial symmetric functions from Lemma 1.2, there are,

(1/λ̃− (1))(k − 1)!rM(λ−(1)),((k−1)!r) ways to choose independent sets of size λ − (1) from W ′
k,r.

Therefore the coefficient of m̃λ in XWk,r
is (1/λ̃− (1))(k − 1)!rM(λ−(1)),((k−1)!r), or, equivalently,

the coefficient of mλ in XWk,r
is (λ̃/λ̃− (1))(k−1)!rM(λ−(1)),((k−1)!r) = r1(k−1)!rM(λ−(1)),((k−1)!r).

Conveniently, this selects all partitions such that r1 > 0, so we don’t need any restrictions in the
sum over λ.

Example 2.1. We verify the formula (ii) from Theorem 2.1 for the simple case where Wk,r =
(V,E) and λ = (1#V ). Since there is only one way to partition the vertex set into independent
sets each of size 1, namely, by putting each vertex into its own independent set, Lemma 1.2
tells us that the coefficient of m̃λ in XWk,r

, denoted by [m̃λ]Wk,r
, should be exactly 1. That is,

[mλ]Wk,r
= (#V )! = (r(k − 1) + 1)!.

We first compute the value of M(1)r(k−1),((k−1)r), which is the number of r(k − 1) × r 0, 1-
matrices such that there is a single 1 in each row and k − 1 1s in each column. Every such matrix
is a permutation of the rows of the matrix A which has Ai,j = 1 where (i − 1)(k − 1) < j ≤
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Figure 2: Lollipop graph L11,4.

i(k − 1) and Ai,j = 0 otherwise. There are (r(k − 1))! total such permutations. Moreover, for
any (i − 1)(k − 1) < j1 < j2 ≤ i(k − 1), permuting rows j1 and j2 in A does not change the
matrix (since the rows are identical). There are (k − 1)!r total such permutations. It follows that
M(1)r(k−1),((k−1)r) = r(k − 1)!/(k − 1)!r.

Lastly, we note that r1 = r(k − 1) + 1 where λ = ((#V )r#V , ..., 1r1). Finally, (ii) in Theorem
2.1 gives the following expression.

[mλ]Wk,r
= (k − 1)!r · (r(k − 1) + 1)

(r(k − 1))!

(k − 1)!r
= (r(k − 1) + 1)!

A lollipop graph on n vertices with girth c < n is the cycle graph Cc with a path of length n− c
attached to any vertex in the cycle. See Figure 3 for a representation of L11,4. The next theorem
gives an explicit formula for the chromatic symmetric function of any, arbitrary lollipop graph. In
the statement of the next theorem, we abuse the notation of the so-called ”Kronecker delta” by
defining for a condition S and an object O,

δS(O) =

{
1 if O satisfies S

0 if O does not satisfy S

Theorem 2.2. Let Ln,c be the unique lollipop graph on n vertices with girth c, then,

XLn,c =
∑
λ⊢n

Cn,c
λ pλ

where λ = (nrn , ..., 1r1),

Cn,c
λ = Cn−1,c

λ−(1) · δ{r1>0}(λ) +
∑

{1<k≤n−c:rk>0}

Cn−k,c
λ−(k)

+
∑

{n−c<k≤n:rk>0}

(k + c− n) · (−1)(n−k)−(
∑n

i=1 ri−1) (
∑n

i=1 ri − 1)! · rk∏n
i=1(ri)!

+ (−1)n · δ{rn=1}(λ)

and,
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Cc+1,c
λ = (−1)c−

∑c+1
i=1 ri−1 (

∑c+1
i=1 ri − 1)! · r1∏c+1

i=1 (ri)!

(
1 +

c∑
j=2

(j − 1)
rj∑c+1

i=1 ri − 1

)
· δ{r1>0}(λ) + (−1)cδ{rc=1}(λ)

+
∑

{1<k≤c+1:rk>0}

(k − 1) · (−1)(n−k)−(
∑c+1

i=1 ri−1) (
∑c+1

i=1 ri − 1)! · rk∏c+1
i=1 (ri)!

+ (−1)c+1 · δ{rc+1=1}(λ)

Proof. We proceed by induction on the length of the path adjoined to the cycle in Ln,c, that is,
on n. For the base case (n = c + 1), we attach a leaf arbitrarily to a vertex in the cycle graph
with c vertices to form Lc+1,c. Let e ∈ E(Lc+1,c)

2 be the unique leaf edge in Lc+1,c. For a fixed
λ0 ⊢ n, we wish to apply Lemma 1.3 by counting the number of subsets S ⊂ E(Lc+1,c) such that
λLn,c

(S) = λ0. We divide our analysis into three disjoint cases.

In the first case, we have e ̸∈ S, in which case the unique leaf of Lc+1,c will always be disconnected
from the rest of the graph. Hence, if r1 = 0 in λ0, there is no way to choose a subset S such that
λLn,c(S) = λ0. Assume, then, that r1 > 0, then the number of ways to choose S such that
λLn,c(S) = λ0 is exactly the number of ways to choose a subset S0 ⊂ E(Cc) where Cc is the cycle
graph on c vertices, such that λCc

(S0) = λ0−(1). Part (iv) of Lemma 1.5 completes the argument,
giving us the term,

(−1)c−
∑c+1

i=1 ri−1 (
∑c+1

i=1 ri − 1)! · r1∏c+1
i=1 (ri)!

(
1 +

c∑
j=2

(j − 1)
rj∑c+1

i=1 ri − 1

)
· δ{r1>0}(λ) + (−1)cδ{rc=1}(λ)

In the second case, e ∈ S and S ̸= E(Lc+1,c). In this case, we suppose that e is in a connected
component of Lc+1,c(S) with vertex size k, where k > 1 is fixed. The key observation of this proof is
that the remaining graph without the connected component containing e is a path (see
Figure 3), so the number of ways to choose S given e is in a connected component of size k is the
number of ways to choose a subset S1 ⊂ E(Pn−k) where Pn−k is the path graph on n − k vertices
such that λPn−k

(S1) = λ− (k). Moreover, there are k−1 ways to position the connected component
containing e on the graph of Lc+1,c. Part (iii) of Lemma 1.5 completes the argument, giving us
the term,

∑
{1<k≤c+1:rk>0}

(k − 1) · (−1)(n−k)−(
∑c+1

i=1 ri−1) (
∑c+1

i=1 ri − 1)! · rk∏c+1
i=1 (ri)!

In the last case, S = E, from which we get the term (−1)c+1δ{rc+1=1}(λ).

For the inductive step, suppose that for any λ0 ⊢ b, Cb,c
λ0

correctly counts the number of ways
to choose a subset S ⊂ E(Lb,c) such that λLn,c

(S) = λ0, and 1 ≤ b < n. Let e be the unique leaf

edge in Ln,c. In the first case, we suppose that e ̸∈ S, in which case there are exactly Cn−1,c
λ−(1) ways

to choose a subset S ⊂ E(Ln,c) with λ(S) = λ if r1 > 0, and 0 otherwise.

In the second case, e ∈ S, and we consider the size of the connected component of Ln,c(S)
which contains e. Suppose the vertex size of this connected component is 1 < k ≤ n − c, then the
remaining graph besides the component containing e is exactly Ln−k,c, from which we conclude there

are Cn−k,c
λ−(k) ways to choose a subset S with λLn,c

(S) = λ. If the size of the connected component

containing e is greater than n − c, then the analysis is the same as in the base case, namely, the
remaining graph of Ln,c(S) except for the connected component containing e is a path graph. In

2For a graph G = (V,E), we let E(G) = E, that is, E(G) is the edge set of G. Similarly, we say V (G) = V is the
vertex set of G.
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Figure 3: Fixing the size of the connected component containing e in L9,8 to be 5, the remaining
graph is always a path on 4 vertices, that is P4. Moreover, there are 4 ways to position the blue
edges.

this case, there are notably k − (n − c) ways to place the connected component containing e onto
the graph of Ln,c. The result follows from Lemma 1.5.

We end with a short discussion about chromatic bases. Recently, it has been shown in [3]
that there is a simple algorithm for computing the CSF of a tree in the star basis. Moreover, by
determining the smallest partition of n in lexicographic order that has a nonzero coefficient in the
star-basis expansion of the CSF, they show that all trees of diameter less than 5 are distinguished
by the CSF. Furthermore, they prove that the set of chromatic symmetric functions of all trees is
a p(n)− n+ 1 dimension subspace of the set of symmetric functions. It remains to be shown what
other nontrivial properties can be proven by examining the CSF in other chromatic bases, such as
the path basis.

Moreover, another question about chromatic bases is which of these bases are Schur positive,
namely, each basis element is a positive linear combination of Schur symmetric functions. For
example, the basis {XKn

: n ≥ 1} is Schur positive as we have the relationship en = s(1n).
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