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Abstract. Given a weighted graph G = (V,E,w) with some private
edge attribute function f : E → R+, the differentially private counting
query problem aims to release the sum of the private edge attributes
along a desired path (or set of paths) in G with differential privacy. In
this work, we introduce the differentially private counting query prob-
lem on approximate shortest paths. A nearly-optimal algorithm with
Θ̃(n1/4) error is known for releasing the counting queries along all true
shortest paths in G [10, 6]. We extend this result by showing if G ad-
mits a t-collective tree spanner with ηt spanning trees, then for each pair
of vertices in V , we can release the counting query over a t-approximate
shortest path with Õ(ηt/ϵ) additive error in the ε-DP case, and Õ(

√
ηt/ϵ)

in the (ε, δ)-DP case. As an example of this, we use the collective tree
O(k log log n)-spanner of [1] to give an algorithm which, for each pair
of vertices, releases counting queries over a O(k log logn)-approximate
shortest path in G with Õ(

√
kn1/k/ϵ) error. Our result is based on the

polylogarithmic error in the differential private release of attributes along
paths in trees, which is much lower than the Ω̃(n1/4) error in the general
case.

1 Introduction

Differential privacy (DP) is a mathematical framework which quantifies the leak-
age of sensitive user information by an algorithm. The definition of differen-
tial privacy requires that the probability of a certain outcome being attained
from a dataset without the contribution of any single individual is very close to
the probability the same outcome is attained from a dataset with the individ-
ual’s contribution restored. Differential privacy has seen applications in industry
and government agencies, with algorithms satisfying differential privacy being
adopted by organizations such as Google [3, 5], Microsoft [11], and the US Census
Bureau [23, 22].

The counting query problem takes on input a weighted, connected graph
G = (V,E,w) and some edge attribute function f : E → R+. The goal is
to release the sum of the attributes along a set of paths in G. Naturally, the
differentially private counting query on a set of paths aims to release the counting
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queries over the set of paths with differential privacy, where the edge attributes
are kept private (and are not dependent on the public edge weights). Previous
work on this problem has shown it to be Θ̃(n1/4)-accurate for the set of (unique)
shortest paths on general graphs (where n = |V | and Θ̃(·) hides a polylogarithmic
factor), for sufficiently small ε, δ > 0 [10, 6].

Calculating private estimates of counting queries over shortest path systems
is motivated by many real-world applications. For instance, consider a graph
where edges represent transactions between financial entities, and the edge at-
tributes model the private value of the transactions. Fraud researchers could
plausibly query this graph along certain paths to check for abnormal activity.
When considering the shortest path between two entities, however, the additive
error lower bound of Ω(n1/4) may be too high. As another example, consider
a graph which models a network of healthcare facilities for the application of
patient transfers, with the edge weights corresponding to public travel times be-
tween facilities. Suppose the private edge attributes correspond to the number
of patients en route between facilities. The lower bound of Ω̃(n1/4) additive er-
ror in releasing the private edge attributes may be too high. It would be useful
to have a way of determining a more accurate estimate of patients in-transfer
between facilities to get their expected capacities towards a successful patient
transfer, at the cost of taking a slightly longer path between facilities. There-
fore, it is well-motivated to improve the additive error for applications where
the importance of being on a shortest path is small compared to the impor-
tance of having an accurate estimate of the private edge attributes. We believe
this relaxed problem shares many common practical applications as the original
problem [10], e.g., in financial transaction networks, transportation networks,
and supply chain networks.

In this setting, we provide a new privacy framework which gives the user a
way of releasing counting queries over approximate shortest paths while greatly
improving the additive error bounds. In specific, we provide an explicit way of
releasing counting queries over O(k log log n)-approximate shortest paths with
Õ(kn1/k/ϵ) additive error in the ε-DP case, and Õ(

√
kn1/k/ϵ) additive error in

the (ε, δ)-DP case.
Our results will make use of the notion of collective tree spanners. A graph

spanner is a sparse subgraph of a graph which preserves approximate pairwise
distances. In specific, if H is an α-spanner of G, then the distance between any
two vertices in H is at most α times their distance in G, where α is referred
to as the stretch. In 2004, the notion of collective tree spanners was introduced
as an extension of tree t-spanners, which consist of a single tree and are the
sparsest type of graph spanner [2]. A collective tree spanner is a collection of
spanning trees of G such that for every pair of vertices, there is a single tree
which approximates their distance [15]. We note that the idea of collective tree
spanners are highly related to the notion of tree covers, as introduced by [24]. A
tree cover is a collection of tree subgraphs whose union spans the entire vertex
set. Unlike a collective tree spanner, the individual trees in a tree cover are not
required to span the entire vertex set.
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1.1 Our Results

In this work, we introduce the notion of the differentially private counting query
on approximate shortest paths (DPCQ on ASP) problem. In particular, we show
that we are able to greatly improve upon the lower bound of Ω̃(n1/4) for the addi-
tive error in general graphs by allowing a counting query to be on a O(k log log n)
approximate shortest path. Due to the key observation that we can release dif-
ferentially private counting query estimates on tree graphs with O(polylog(n))
error via a recursive algorithm [29, 10], we can release a private estimate of the
counting queries over all trees in a collective tree spanner with additive error
proportional to the number of trees. Consequently, we can release an estimate
over an approximate shortest path for every pair of vertices in V with low error.

Theorem 1. Let T be a t-collective tree spanner of G such that |T| = ηt. For
γ ∈ (0, 0.5] and ε ∈ (0, 1], there is an ε-DP algorithm for releasing the counting
query between u, v ∈ V on a t-approximate shortest path in G that is O(ηt ·
log2.5 (n) · log (1/γ)/ε)-accurate with probability 1− γ.

Theorem 2. Let T be a t-collective tree spanner of G such that |T| = ηt. For
γ ∈ (0, 0.5] and ε, δ ∈ (0, 1], there is an (ε, δ)-DP algorithm for releasing the
counting query between u, v ∈ V on a t-approximate shortest path that is O(

√
ηt ·

log2 (n) · log (1/δ) ·
√

log (1/γ)/ε)-accurate with probability 1− γ.

Based on Ramsey spanning trees which are a collective tree O(k log log n)-
spanner with kn1/k trees [1], we immediately arrive at the following results.

Corollary 1. For γ ∈ (0, 0.5] and ε ∈ (0, 1], there exists an ε-DP algorithm for
releasing the counting query between u, v ∈ V on a O(k log log n)-approximate
shortest path in G that is O(kn1/k · log2.5 (n) · log (1/γ)/ε)-accurate with proba-
bility 1− γ.

Corollary 2. For γ ∈ (0, 0.5] and ε, δ ∈ (0, 1], there exists an (ε, δ)-DP al-
gorithm for releasing the counting query between u, v ∈ V on a O(k log logn)-
approximate shortest path that is O(

√
kn1/k · log2 (n) · log (1/δ) ·

√
log (1/γ)/ε)-

accurate with probability 1− γ.

1.2 Related Work

Differentially Private Range Query In 2023, Deng et al. [10] were the first
to study the application of differential privacy to the range query problem on
shortest paths. We follow their DP framework where two graphs are neighboring
if they share the graph topology and edge weights, and the vectors of edge
attributes differ by a most 1 in the l1-distance. In particular, [10] showed an
algorithm for DP counting queries on shortest paths that is O(n1/3 ·log5/6 (n)/ε)-
accurate in the ε-DP case and O(n1/4 · log2/3 (n) · log1/4 (1/δ)/ε)-accurate in the
(ε, δ)-DP case.
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The application of differential privacy to graph problems was first studied
by Hay et al. [25] in 2009, by giving a mechanism to release a private estimate
of the degree distribution in a graph. In their work, they introduce the notions
of node- and edge-differential privacy, which defines neighboring graphs based
on their underlying graph topology. Algorithms with node- and edge-differential
privacy have been studied considerably in recent literature [28, 26, 27]. Adam
Sealfon [29] was the first to study the application of differential privacy to the
all-pairs shortest distances (APSD) problem [9, 20, 21], defining neighboring
graphs based on the l1 distance of their private edge weight vectors.

Furthermore, Chen et al. [9] proved a lower bound for the additive error of
Ω(n1/6) in any algorithm for DP all-pairs distances release on general graphs,
for a sufficiently small ε, δ > 0, by exploiting a reduction from the linear queries
problem to APSD, and a hereditary discrepancy lower bounded provided by
Chazelle and Lvov [8]. It was noted by Deng et al. [10] that this lower-bound
technique also applies to the DP range query on shortest paths problem. Soon
after, Bodwin et al. [6] improved this lower bound to Ω(n1/4/

√
log n) as a result

of a better discrepancy lower bound, proving, together with the upper bound by
[10], that the DP range query on shortest paths problem is Θ̃(n1/4)-accurate for
general graphs.

Collective Tree Spanners The notion of collective tree spanners was first
introduced in 2004 by Dragan et al. [15], who gave constructions of additive
collective tree spanners for chordal graphs, co-comparability graphs, and more.
Since then, additive collective tree spanners have been developed in the lit-
erature, with many results on specific families of graphs such as graphs with
bounded parameters [13], bounded tree-breadth graphs [12], and more [16, 14].
Multiplicative collective tree spanners were first (informally) studied in 2001 by
Gupta et al. [24] as an application to a graph routing problem, showing that all
planar graphs have a collective multiplicative tree 1-spanner with O(

√
n) trees,

and a 3-spanner with O(log (n)) trees. Recently, the topic of multiplicative col-
lective tree spanners has seen an increase in the literature due to the notion of
tree padding spanners, which is an instance of the collective tree spanner problem
such that each vertex has a single tree for which all the α-approximate paths
are contained. Abraham et al. [1] gave an algorithm which constructs a tree
padding (k log log n)-spanner which is a collection of kn1/k spanning trees. Sim-
ilarly, Bartal et al. [4] gave constructions of tree covers for metric spaces with
a small amount of trees for general, doubling, and planar metrics in the normal
and Ramsey (analogous to the tree padding spanner case for graphs) cases.

2 Preliminaries

First, we present the definition of collective tree spanners. For x, y ∈ V , we let
dG(x, y) to be the shortest path distance between x and y in G.
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Definition 1. A collection of spanning trees T of G is said to be an α-collective
tree spanner of G if for every u, v ∈ V , there is a tree T ∈ T such that dT (u, v) ≤
α · dG(u, v).

Next, we define the notion of what it means for a dataset to differ in the
contribution of one individual. In our case, as in [10], isomorphic, undirected,
weighted graphs are neighbors if their edge attribute vectors differ by at most 1
in the l1 norm.

Definition 2. Two isomorphic graphs G1, G2 = (V,E,w) with edge attribute
functions f1, f2 : E → R+ are said to be neighboring if∑

e∈E

|f1(e)− f2(e)| ≤ 1

Moreover, we define the notion of the sensitivity of a function as the most
the function can differ over neighboring datasets.

Definition 3. The l1 sensitivity of F : X → RD is defined as

∆1(f) := max
X,X′

∥F(X)−F(X ′)∥1

where X,X ′ are neighboring datasets.

We are now ready to present the formal definition of differential privacy.

Definition 4. An algorithm M : X → RD is said to be (ε, δ)-differentially
private if, for all outcomes S ⊆ RD and neighboring datasets X,X ′,

P[M(X) ∈ S] ≤ eε · P[M(X ′) ∈ S] + δ

Furthermore, we present the Laplace mechanism, which is one of the primary
tools in the theory of differential privacy. In specific, the Laplace mechanism
describes how much one needs to perturb a released statistic in order to guarantee
it is ε-DP.

Lemma 1 (Laplace Mechanism, [19]). Given any function f : X → Rk, the
Laplace mechanism on input X ∈ X independently samples Y1, ..., Yk according
to Lap(∆1(f)/ε) and outputs,

Mf,ε(X) = f(X) + (Y1, ..., Yk)

The Laplace mechanism is ε-differentially private.

We also present a useful result about the concentration of independent Laplace
random variables.
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Lemma 2 ([7]). Let X1, ..., Xt be independent random variables distributed ac-
cording to Lap(b), and let X = X1 + ... + Xt. Then for all γ ∈ (0, 1), with
probability at least 1− γ we have,

|X| < O(b
√
t log (1/γ))

Next, we present here two key results about the composition of differentially
private systems.

Lemma 3 (Basic Composition, [19, 17]). Let ε, δ ∈ [0, 1] and k ∈ N. If
we run k mechanisms where each mechanism is (ε/k, δ/k)-differentially private,
then the entire algorithm is (ε, δ)-differentially private.

Lemma 4 (Advanced Composition, [19, 18]). Let ε, δ ∈ (0, 1] and k ∈ N.

If we run k mechanisms where each mechanism is
(

ε

2
√

2k log (2/δ)
, δ
2k

)
-DP, then

the entire algorithm is (ε, δ)-DP.

3 DP Counting Queries on Approximate Shortest Paths

In this section, we show how we are able to release all-pairs counting queries
much more accurately by allowing them to be on t-approximate shortest paths.
We achieve a much lower error than the DP range query problem on true shortest
paths by leveraging a result which gives an ε-DP recursive algorithm for releasing
the counting queries over all-pairs shortest paths in trees with O(polylog(n))
additive error. Previous similar results were on DP releasing all-pairs shortest
distances in trees by Sealfon [29], which were adapted to the (ε, δ)-DP and range
query setting by Deng et al. [10]. In this paper, we explicitly provide the proof
for releasing DP counting queries on all pairs of vertices in a tree under the
ε-DP setting. We then apply the result to the studied problem of DP counting
queries over approximate shortest paths carefully in order to save a log n term.
Throughout this section, for any two vertices x, y ∈ V , we let PG(x, y) to be
the shortest path between x and y and ωG(x, y) =

∑
e∈PG(x,y) f(e) to be the

accumulation of edge attributes along the shortest path between x and y, or the
counting query.

We will first prove the result for releasing counting queries from the root of a
rooted tree to all other vertices, and then extend this result to counting queries
for all pairs of vertices in a tree.

Lemma 5. Let T = (V,E,w) be a tree rooted at z with ε ∈ (0, 1] and γ ∈
(0, 0.5]. Then there is an ε-DP algorithm for releasing counting queries from the
root to all other vertices on T that is O(log1.5 (n) · log (n/γ)/ε)-accurate with
probability 1− γ.

Proof. The algorithm works by splitting the tree into subtrees, each with fewer
than n/2 vertices, computing counting queries between the root and the roots
of the subtrees, and then applying the algorithm recursively on each subtree.
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It is a well-known result that every tree has either one or two vertices known
as centroids such that their removal disconnects the tree into subtrees, each with
fewer than n/2 vertices (see, for example, [31]). If T has a single centroid, we
let z∗ be that vertex. If T has two centroids, we let z∗ be the centroid that is
closer to the root node z. By choosing it in this way, we guarantee that z∗ is the
unique vertex such that the subtree rooted at z∗ has more than n/2 vertices,
but the subtree rooted at each of z∗’s children has at most n/2 vertices. Let
z1, ..., zt be the children of z∗ and Ti = (Vi, Ei), i ∈ {1, ..., t}, their corresponding
subtrees. Additionally, we define T0 to be the subtree rooted at z with vertex set
V0 = V − {V1, ..., Vt}.

Next, we release the counting queries between z and z∗, as well as be-
tween z∗ and each of it’s children by adding Laplace noise from the distribution
Lap(log (n)/ε). In particular, we note that since each tree is disjoint by construc-
tion, the function which releases these counting queries has sensitivity 1. Hence,
by Lemma 1, releasing each subtree is (ε/ log (n))-DP. Then, we recursively call
this algorithm for each subtree until each subtree consists only of a single vertex.

Since each subtree has at most n/2 vertices, the maximum recursion depth is
bounded by log (n). Hence, by basic composition (Lemma 3), since the released
queries in our algorithm are a composition of log (n), (ε/ log (n))-DP mecha-
nisms, the total algorithm is ε-DP.

It remains to be shown that the error in each released estimate is bounded
above by O(polylog(n)). We note that for every u ∈ V , the estimate of ω(z, u)
is the composition of released queries from root nodes to centroids, and from
centroids to their children. By bounding the number of released estimates in
the composition, we can bound the total error incurred from each noisy random
variable.

We will prove by induction on the number of vertices that the number of
released estimates used to calculate an estimate of ω(z, u) is bounded above by
2 log (n). Firstly, the base case of n = 1 is vacuously true. Suppose n > 1. In the
first iteration of the algorithm, the vertex sets V0, V1, ..., Vt are a partition of V .
Hence, u ∈ Vi for some i ∈ [t]. By the induction hypothesis, we can release the
distance from zi to u by the composition of at most 2 log (n/2) = 2 log (n) − 2
noisy distances. Then, we have that ω(z, zi) = ω(z, z∗)+ω(z∗, zi), giving a total
of 2 log (n) noisy estimates.

It follows that the error in each released estimate is the concatenation of
2 log (n) random variables distributed according to Lap(log (n)/ε). By Lemma
2, with probability at most γ, we have that the error exceeds O(log1.5 (n) ·
log (1/γ)/ε). Hence, by a union bound, with probability at least 1− γ, the error
for the estimate from z to all vertices u ∈ V is bounded above by O(log1.5 (n) ·
log (n/γ)/ε), as desired.

Next, we will prove another result by extending Lemma 5 to the all-pairs
case. We intentionally keep the term O(log1.5 (n) · log (n/γ)/ε) instead of
O(log2.5 (n) · log (1/γ)/ε), in order to facilitate a more careful analysis in The-
orem 1 to save a log n term through Proposition 1.

Proposition 1 states a few basic results about asymptotics.
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Proposition 1. Let α ≥ 2, γ ∈ (0, 0.5], and λ > 0, then,

1. log (α1+λ/γ) = O(log (α/γ)), and,
2. log (α/γ) = O(log (α) log (1/γ)).

Lemma 6. Let T = (V,E,w) be a tree with ε ∈ (0, 1] and γ ∈ (0, 0.5]. Then
there is an ε-DP algorithm for releasing counting queries on all pairs of vertices
in T that is O(log1.5 (n) · log (n/γ)/ε)-accurate with probability 1− γ.

Proof. Choose a vertex z ∈ V arbitrarily as a root vertex of T , and call the
rooted tree Tz. Then, using Lemma 5, we can privately release the counting
query from z to every other vertex in Tz. We will show that these estimate suffice
to compute the estimate for any pair x, y ∈ V of vertices in V .

Let vx,y ∈ V be the lowest common ancestor of x and y in the rooted tree Tz.
Then, ωT (x, y) = ωT (x, vx,y)+ωT (vx,y, y) = ωTz

(z, x)+ωTz
(z, y)−2ωTz

(z, vx,y).
By the result in Lemma 5, we condition on the event that for all w ∈ V ,
ω(z, w) is O(log1.5 (n) · log (n/γ)/ε)-accurate with probability 1 − γ. Since our
query estimate is the sum of four estimates from z, the total error is at most
four times this, which is still O(log1.5 (n) · log (n/γ)/ε). By a union bound, with
probability 1 − γ each counting query among all n2 pairs counting queries is
at most O(log1.5 (n) · log (n3/γ)/ε)=O(log1.5 (n) · log (n/γ)/ε), by Proposition
1.

Applying Lemma 6 directly to a collective tree spanner of a graph gives the
desired result.

Proof (of Theorem 1). Since T is constructed only based on the public edge
weights and topology of G, each tree T ∈ T is also public. For each tree T we
run the ε/|T|-DP algorithm from Lemma 6 to release the counting query over
T . By basic composition (Lemma 3), releasing the counting queries in all the
trees is ε-DP.

By the definition of a collective tree spanner, for every pair of vertices u, v ∈
V , there is a tree T ∈ T such that PT (u, v) is a t-approximate shortest path
between u and v. We let ω̃(u, v) to be the private counting query estimate over the
path PT (u, v). The result of Lemma 6 ensures that, with probability 1− γ/n2,
the additive error in the released counting query is,

max
u,v∈V

|ωT (u, v)− ω̃(u, v)| ≤ O(|T| · log1.5 (n) · log (n3/γ)/ε)

= O(ηt · log1.5 (n) · log (n/γ)/ε)
= O(ηt · log2.5 (n) · log (1/γ)/ε)

(1)

where the two equalities hold because of Proposition 1. By a union bound,
the upper bound (1) holds for all n2 pairs of vertices with probability at least
1− γ.

For DPCQ on ASP, the (ε, δ) case is identical to the ε-DP case except for two
differences. Firstly, we use advanced composition to release the private counting
query estimates for each tree T ∈ T instead of basic composition (Lemma 3).
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The second difference is that, instead of applying Lemma 6 to compute the
distance estimates in each tree T , we apply the following lemma by Deng et
al. which adds Gaussian noise to the edge weights instead of Laplacian noise to
reduce the final error by a factor of log (n) in the (ε, δ)-DP case. We state the
result here but refer the reader to [10] for a detailed proof.

Lemma 7. Let T = (V,E,w) be a tree with ε, δ ∈ (0, 1] and γ ∈ (0, 0.5]. Then
there is an (ε, δ)-DP algorithm for releasing counting queries on all pairs of ver-
tices in T that is O(log (n) ·

√
log (1/δ) ·

√
log (n/γ)/ε)-accurate with probability

1− γ.

The proof of Theorem 2 is similar to the proof of Theorem 1 and is
therefore deferred to Appendix A.

To give an explicit instance of Theorem 1 and 2, we note that Abraham et
al. [1] gave a construction based on Ramsey spanning trees for a collective tree
O(k log log n)-spanner with kn1/k trees. By the result of Theorem 2, choosing
k ≥ 3 immediately gives improvement on the additive approximate over the
Õ(n1/4) algorithm on true shortest paths from [10].
Runtime Analysis. Not only does releasing differentially private counting
queries over approximate shortest paths allow us to greatly improve the ad-
ditive error in the released estimates, but also potentially the runtime of the
algorithm to release the estimates. In particular, the Θ̃(n1/4) algorithm from
[10] to release counting queries over exact shortest paths requires first sampling
a hitting set of vertices of size Õ(

√
n), and then computing the shortest path

trees spanning from each vertex in the hitting set. Using Dijkstra’s algorithm,
this time complexity of this process is Õ(n2.5).

By allowing the counting queries to be along approximate shortest paths, we
bypass the need to calculate exact shortest paths from a hitting set of vertices.
In specific, since the Laplace noise can be sampled and added to the edges of
a tree in O(1) time and the centroid can be found in linear time, the recursive
process described in the proof of Lemma 5 takes O(n log n) time. It follows
that the total algorithm to release the counting queries on approximate paths
can run in O(S(n) + ηt · n log n) time, where S(n) is the amount of time needed
to construct the collective tree spanner on the graph G.

4 Conclusion and Future Work

In this work, we introduce the problem of differentially private counting queries
on approximate shortest paths in graphs. In specific, we show that the addi-
tive error lower bound of Ω̃(n1/4) for counting queries on true shortest paths
can be greatly improved to Õ(

√
kn1/k/ϵ) at the cost of querying along Õ(k)-

approximate shortest paths. It is still an open question what the optimal trade-
off between the quality of shortest paths and the additive error is. We discuss
the future work from the perspective of collective tree spanners.
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Collective Tree Spanners

The method we provide in this work is based on the existence of collective tree
spanners for general graphs. Tree graphs have many convenient properties such
as being well-suited to recursive algorithms and having unique path systems, em-
phasizing their convenience in algorithm design. Despite this, until recently there
have been few results about multiplicative collective tree spanners for general
graphs. Even the collective tree O(k log log n)-spanner mentioned in this work is
an instance of a tree padding spanner, making it optimal for routing problems,
but sacrificing an optimal tradeoff between stretch and size for a property that
is not necessary for applications like ours.

In specific, we note that one clear gap in the current literature is the construc-
tion of a constant stretch collective tree spanner with optimal size and stretch
tradeoff, namely a collective tree (2k − 1)-spanner with O(n1/k) trees. In what
follows, we give an outline of the construction of such a spanner.

In particular, consider the celebrated distance oracle of Thorup and Zwick
[30]. Their distance oracle samples nested subsets of vertices of decreasing size
V = A0 ⊇ A1 ⊇ ... ⊇ Ak−1 ⊇ Ak = ∅. For each vertex w ∈ Ai, they define a
set of vertices called a cluster by C(w) := {v ∈ V | d(w, v) < d(v,Ai+1)}. Then,
they compute the shortest path tree rooted at w spanning each cluster. The
shortest path distances within each cluster are then used to output the distance
approximations, inducing a tree cover of the graph. In expectation, the number
of edges in the union of spanning trees of clusters centered at vertices in Ai is
O(n1+1/k), meaning that the clusters at each level could plausibly be packed into
O(n1/k) spanning trees of G, giving a final collective tree (2k− 1)-spanner with
O(kn1/k) trees.

One issue with this approach is that the clusters at each level may have some
intersections with one another, and hence we cannot guarantee that packing
the clusters together will produce a spanning tree of G. Instead, we can equally
partition each set Ai randomly into β ∈ N subsets Ar

i , r ∈ [β] and then define
the clusters C∗(w) = {v ∈ V | d(w, v) < d(v,Ar

i − {w})}. By this definition,
clearly the clusters at each level are disjoint. As long as β is chosen to be large
enough such that, with high probability d(v,Ai+1) < d(v,Ar

i − {w}) for every
v ∈ V , i ∈ [k − 1], and r ∈ [β], we have that C(w) ⊆ C∗(w), implying that
the (2k − 1) stretch result still holds for the modified definitions of clusters.
Furthermore, since for each partition of Ai we construct a single spanning tree
of G, the final collective tree spanner would consist of k · β trees. Future work
can formalize how large β must be in-terms of n to give an explicit construction
of a collective tree (2k − 1)-spanner using this method.
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A Proof of Theorem 2

Theorem 2. Let T be a t-collective tree spanner of G such that |T| = ηt.
For γ ∈ (0, 0.5] and ε, δ ∈ (0, 1], there is an (ε, δ)-DP algorithm for releasing
the counting query between u, v ∈ V on a t-approximate shortest path that is
O(

√
ηt · log2 (n) · log (1/δ) ·

√
log (1/γ)/ε)-accurate with probability 1− γ.

Proof. For each tree T ∈ T we run the (ε/(2
√

2|T| log (2/δ)), δ/(2|T|))-DP al-
gorithm from Lemma 7 to release the counting query over T . By advanced
composition (Lemma 4), releasing the counting queries in all the trees is (ε, δ)-
DP.

By the definition of collective tree spanners, for every pair of vertices u, v ∈ V ,
there is a tree T ∈ T such that PT (u, v) is a t-approximate shortest path between
u and v. We let ω̃(u, v) to be the private counting query estimate over the path
PT (u, v). The result of Lemma 7 ensures that, with probability 1 − γ/n2, the
additive error in the released counting query is,

max
u,v∈V

|ωT (u, v)− ω̃(u, v)|

≤ O(
√
|T| ·

√
log (2/δ) · log (n) ·

√
log (1/δ) ·

√
log (n3/γ)/ε)

= O(
√
ηt · log2 (n) · log (1/δ) ·

√
log (1/γ)/ε) (2)

by Proposition 1. By a union bound, the upper bound (2) holds for all n2 pairs
of vertices with probability at least 1− γ.

B Proof of Proposition 1

Proposition 1. Let α ≥ 2, γ ∈ (0, 0.5], and λ > 0, then,

1. log (α1+λ/γ) = O(log (α/γ)), and,
2. log (α/γ) = O(log (α) log (1/γ)).

Proof (of 1).

log (α1+λ/γ) = log ((α/γ1/(1+λ))1+λ) = (1 + λ) · log (α/γ1/(1+λ))

≤ (1 + λ) · log (α/γ) = O(log (α/γ))

Proof (of 2). Suppose the base of our logarithm is b = {2, e}. Then,

log (α/γ) = log (α)+log (1/γ) = O(max {log (α), log (1/γ)}) = O(log (α) log (1/γ))

as α, 1/γ ≥ 2.
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